Test Catalog

Test Id : GSDGP

Glycogen Storage Disease Gene Panel, Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Follow up of abnormal biochemical results consistent with glycogen storage disease (GSD)

 

Establishing a molecular diagnosis for patients with GSD

 

Identifying variants within genes known to be associated with GSD allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

Reflex Tests
Lists tests that may or may not be performed, at an additional charge, depending on the result and interpretation of the initial tests.

Test Id Reporting Name Available Separately Always Performed
FIBR Fibroblast Culture Yes No
CRYOB Cryopreserve for Biochem Studies No No

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

 

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Method Name
A short description of the method used to perform the test

Custom Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing.

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Glycogen Storage Disease Gene Panel

Aliases
Lists additional common names for a test, as an aid in searching

Glycogen Storage Disease

Glycogen storage disease of the heart -Wolff-Parkinson-White syndrome

Glycogen storage disease type 0 -muscle

Glycogen storage disease type 11, GLUT-2 deficiency, Fanconi Bickel syndrome

Glycogen storage disease type Ia, mitochondrial

Glycogen storage disease type Ib & Ic

Glycogen storage disease type IIb- Danon disease

Glycogen storage disease type III

Glycogen storage disease type IV -adult polyglucosan body disease

Glycogen storage disease type IXA

Glycogen storage disease type IXC

Glycogen storage disease type V, McArdle disease

Glycogen storage disease type VI

Glycogen storage disease type VII

Glycogen storage disease type X- phosphoglycerate mutase deficiency

Glycogen storage disease type XI- lactate dehydrogenase deficiency

Glycogen storage disease type XV

Glycogen storage disease XII

Glycogen storage disease XIII

Glycogen storage disease, IXb

Glycogen synthase 2 (glycogen storage disease 0, liver)

GSD

Lafora progressive myoclonus epilepsy

Next Gen Sequencing Test

Phosphoglucomutase 1 (glycogen storage disease XIV)

Phosphoglycerate kinase deficiency

Phosphorylase kinase, alpha 1 (muscle) (Glycogen storage disease, type IXD)

Pompe disease-glycogen storage disease type II

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

 

Specimen Type
Describes the specimen type validated for testing

Varies

Ordering Guidance

The recommended first-tier biochemical testing, including glucose monitoring, triglycerides, uric acid level, creatine kinase, liver function tests, and complete blood cell count, may be helpful in establishing a diagnosis.

Shipping Instructions

Specimen preferred to arrive within 96 hours of collection.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Acceptable: Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send specimen in original tube.

Specimen Stability Information: Ambient (preferred)/Refrigerated

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:

-Informed Consent for Genetic Testing  (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

2. Molecular Genetics: Biochemical Disorders Patient Information (T527) in Special Instructions

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the Testing Laboratory

See Specimen Required

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Varies Varies (preferred)

Useful For
Suggests clinical disorders or settings where the test may be helpful

Follow up of abnormal biochemical results consistent with glycogen storage disease (GSD)

 

Establishing a molecular diagnosis for patients with GSD

 

Identifying variants within genes known to be associated with GSD allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

 

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Glycogen storage diseases (GSD) are a group of inherited metabolic conditions caused by deficiency of enzymes responsible for glycogen metabolism, resulting in abnormal storage of glycogen in the liver and various muscles. There are over 15 different GSD that vary in symptoms and severity, dependent on the enzyme deficiency, although liver and muscle are most commonly affected.

 

Generally, they can be divided into 2 categories, those with hepatic involvement and those with neuromuscular involvement. Some GSD result in single tissue disease, while others affect multiple organs. Clinical features may include hepatomegaly, hypoglycemia, muscle cramps, exercise intolerance, and progressive fatigue and weakness. Preliminary biochemical testing may be helpful in making a diagnosis (ie, glucose monitoring, triglycerides, uric acid level, creatine kinase, liver function tests, and complete blood cell count).

 

This test involves sequencing of 26 genes related to various GSD. 

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

An interpretive report will be provided.

Interpretation
Provides information to assist in interpretation of the test results

All detected alterations are evaluated according to American College of Medical Genetics and Genomics (ACMG) recommendations.(1) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Clinical Correlations:

Test results should be interpreted in context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

 

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at risk individuals.

 

To discuss the availability of further testing options, for assistance in general test selection, or for assistance in the interpretation of these results, Mayo Clinic Laboratory genetic counselors can be contacted at 800-533-1710.

 

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions, but assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If specific clinical disorders are suspected, evaluation by alternative methods can be considered.

 

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent heterologous blood transfusion, these results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

 

There may be regions of genes that cannot be effectively amplified for sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

 

This assay will not reliably detect insertions/deletions (indels) of 40 or more base pairs (bp), including Alu insertions, long interspersed nuclear elements (LINES), and short interspersed nuclear elements (SINES). The bioinformatics software pipeline is verified to detect 95% of deletions up to 75 bp and insertions up to 47 bp.

 

Additionally, low level mosaic variants may not be detected.

 

This test is not designed to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

 

Reclassification of Variants-Policy:

At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages health care providers to contact the laboratory at any time to learn how the status of a particular variant may have changed over time.

 

Variant Evaluation:

Evaluation and categorization of variants is performed using published American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) recommendations as a guideline.(1) Other gene specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

 

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment. Intronic and synonymous sequence variants not predicted to impact splicing or otherwise contribute to disease are not reported.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-424

2. Chen YT, Kishani PS, Koeberl D: Glycogen storage disease. In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, eds. The Online Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill Education; 2019. Accessed October 28, 2020. Available at https://ommbid.mhmedical.com/content.aspx?sectionid=225080698&bookid=2709&Resultclick=2

3. Hicks J, Wartchow, E, Mierau G: Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35(5):183-196

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Method Description
Describes how the test is performed and provides a method-specific reference

Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed. NGS and/or a polymerase chain reaction (PCR)-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

 

There may be regions of genes that cannot be effectively amplified for sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

 

PCR-based methods and/or Sanger sequencing is used to confirm variants detected by NGS when appropriate.(Unpublished Mayo method)

 

Targeted Genes and Methodology Details for Glycogen Storage Disease Gene Panel in Special Instructions for details regarding the targeted gene regions for this test.

 

Genes analyzed: AGL, ALDOA, ENO3, EPM2A, FBP1, G6PC, GAA, GBE1, GYG1, GYS1, GYS2, LAMP2, LDHA, NHLRC1, PFKM, PGAM2, PGK1, PGM1, PHKA1, PHKA2, PHKB, PHKG2, PRKAG2, PYGL, PYGM, RBCK1, SLC2A2, SLC37A4

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Varies

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

Whole Blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

81443

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports