Test Catalog

Test Id : GLP

Glucagon, Plasma

Useful For
Suggests clinical disorders or settings where the test may be helpful

Diagnosis and follow-up of glucagonomas and other glucagon-producing tumors

 

Assessing diabetic patients with problematic hyper- or hypoglycemic episodes (extremely limited utility)

Method Name
A short description of the method used to perform the test

Enzyme-Linked Immunosorbent Assay (ELISA)

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Glucagon, P

Aliases
Lists additional common names for a test, as an aid in searching

GLP

Specimen Type
Describes the specimen type validated for testing

Plasma EDTA

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Patient Preparation: Patient should fast for 8 hours before specimen collection.

Supplies: Sarstedt Aliquot Tube, 5 mL (T914)

Collection Container/Tube: Lavender top (EDTA)

Submission Container/Tube: Plastic vial

Specimen Volume: 2 mL

Collection Instructions:

1. Pre-chill lavender top (EDTA) tube at 4 degrees C before drawing the specimen.

2. Draw blood into the pre-chilled tube and process as follows:

 a. Chill filled tube in wet ice for 10 minutes.

 b. Centrifuge in a refrigerated centrifuge or in a pre-chilled centrifuge carrier.

 c. Immediately after centrifugation, aliquot plasma into a plastic vial and freeze.

Forms

If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the testing laboratory. The minimum volume is sufficient for one attempt at testing.

0.45 mL

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

Gross hemolysis Reject
Gross lipemia Reject
Gross icterus Reject

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Plasma EDTA Frozen 90 days

Useful For
Suggests clinical disorders or settings where the test may be helpful

Diagnosis and follow-up of glucagonomas and other glucagon-producing tumors

 

Assessing diabetic patients with problematic hyper- or hypoglycemic episodes (extremely limited utility)

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Glucagon is a single-chain polypeptide of 29 amino acids that is derived from a larger precursor peptide (big plasma glucagon), which is cleaved upon secretion. The main sites of glucagon production are the hypothalamus and pancreatic alpha-islet cells. The function of hypothalamic glucagon is incompletely understood and currently no clinical disorders of hypothalamic glucagon function have been defined. Pancreatic islet glucagon is secreted in response to hypoglycemia, with resultant increases in blood glucose concentration. Glucagon's hyperglycemic effect is produced by stimulating hepatic glycogenolysis and gluconeogenesis; it has no effect on muscle glycogen. Once blood glucose levels have normalized, glucagon secretion ceases.

 

Excessive glucagon secretion can lead to hyperglycemia. Excessive and inappropriate glucagon secretion can sometimes be observed in diabetes, particularly during ketoacidosis, and can complicate management of the disorder. In rare cases, it also can occur in tumors of the pancreatic islets (glucagonoma), hepatocellular carcinomas, carcinoid tumors, and other neuroendocrine neoplasms. Patients with glucagon-secreting tumors may present with classic glucagonoma syndrome, consisting of necrolytic migratory erythema, diabetes, and diarrhea, but can also have more subtle symptoms and signs.

 

Decreased or absent glucagon response to hypoglycemia can be seen in type I diabetes (insulin-dependent diabetes) and can contribute to severe and prolonged hypoglycemic responses.

 

Glucagon is routinely measured along with serum glucose, insulin, and C-peptide levels during the mixed-meal test employed in the diagnostic workup of suspected postprandial hypoglycemia. However, it plays only a minor role in the interpretation of this test.

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

> or =1 year of age: < or =159 pg/mL

<1 year of age: No reference interval established.

 

For International System of Units (SI) for Reference Values, see www.mayocliniclabs.com/order-tests/si-unit-conversion.html.

Interpretation
Provides information to assist in interpretation of the test results

Elevated glucagon concentrations in the absence of hypoglycemia may indicate the presence of a glucagon-secreting tumor. Successful treatment of a glucagon-secreting tumor is associated with normalization of glucagon levels.

 

Inappropriate elevations in glucagon concentrations in patients who are hyperglycemic and have type I diabetes indicate that paradoxical glucagon release may contribute to disease severity. This can be observed if insulin treatment is inadequate and patients are ketotic. However, glucagon measurement plays little, if any, role in the diagnostic workup of diabetic ketoacidosis.

 

In patients with diabetes, low glucagon concentrations (undetectable or in the lower quartile of the normal range) in the presence of hypoglycemia indicate impairment of hypoglycemic counter regulation. These patients may be particularly prone to recurrent hypoglycemia. This can be a permanent problem due to islet alpha-cell destruction or other, less well understood processes (eg, autonomous neuropathy). It can also be functional, most often due to over-tight blood glucose control and may be reversible after decreasing insulin doses.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Results obtained with different glucagon assays can differ. This can be caused by use of different calibration standards or variable cross-reactivity with different isoforms of glucagon, not all of which are biologically active.

 

The monoclonal antibodies used in this assay only detect the full-length glucagon (amino acids1-29) and do not cross react with glucagon fragments or closely related peptides such as glicentin, oxyntomodulin, glucagon-like peptide-1 (GLP-1), GLP-2, or glicentin-related pancreatic polypeptide.

 

Glucagon serial measurements should always be performed using the same assay.

 

Patients with diabetes, acromegaly, or Cushing syndrome or who are obese have higher glucagon levels.

 

Tumor marker tests, including glucagon, are not specific for malignancy. All immunometric assays can, on rare occasions, be subject to hooking at extremely high analyte concentrations (false-low results), heterophilic antibody interference (false-high results), or autoantibody interference (unpredictable effects). If the laboratory result does not fit the clinical picture, these possibilities should be considered.

 

In rare cases, some individuals can develop antibodies to mouse or other animal antibodies (often referred to as human anti-mouse antibodies [HAMA] or heterophile antibodies), which may cause interference in some immunoassays. Caution should be used in interpretation of results, and the laboratory should be alerted if the result does not correlate with the clinical presentation.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Tomassetti P, Migliori M, Lalli S, Campana D, Tomassetti V, Corinaldesi R. Epidemiology, clinical features and diagnosis of gastroenteropancreatic endocrine tumours. Ann Oncol. 2001;12 Suppl 2:S95-S99

2. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671-E678

3. van Beek AP, de Haas ER, van Vloten WA, Lips CJ, Roijers JF, Canninga-van Dijk MR. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol. 2004;151(5):531-537

4. Cruz-Bautista I, Lerman I, Perez-Enriquez B, et al. Diagnostic challenge of glucagonoma: case report and literature review. Endocr Pract. 2006;12(4):422-426

5. Falconi M, Eriksson B, Kaltsas G, et al. ENETS Consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 2016;103(2):153-171

Method Description
Describes how the test is performed and provides a method-specific reference

The glucagon enzyme-linked immunosorbent assay (ELISA) is a quantitative two-step sandwich type immunoassay. In the first step, calibrators, controls, and unknown samples are added to glucagon antibody-coated microtiter wells and incubated with biotinylated glucagon antibody. After the first incubation and washing, the wells are incubated with streptavidin horseradish peroxidase conjugate (SHRP). After the second incubation and washing step, the wells are incubated with substrate solution (tetramethylbenzidine: TMB). After TMB incubation, an acidic stopping solution is added. In principle, the antibody-biotin conjugate binds to the solid phase antibody-antigen complex, which in turn binds to the streptavidin-enzyme conjugate. The antibody-antigen-biotin conjugate-SHRP complex bound to the well is detected by enzyme-substrate reaction. The degree of enzymatic turnover of the substrate is determined by dual wavelength absorbance measurement at 450 nm as primary test filter and 630 nm as reference filter. The absorbance measured is directly proportional to the concentration of glucagon in the samples and calibrators.(Package insert: Glucagon ELISA IFU. Ansh Labs, Revision 09, 01/2023)

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Tuesday, Friday

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

3 to 7 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

2 weeks

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees :
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test has been cleared, approved, or is exempt by the US Food and Drug Administration and is used per manufacturer's instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

82943

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
GLP Glucagon, P 2338-2
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
9358 Glucagon, P 2338-2

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports

Test Update Resources

Change Type Effective Date
Test Changes - Reference Value 2025-06-02