Test Id : HBEL1
Hemoglobin Electrophoresis Evaluation, Blood
Useful For
Suggests clinical disorders or settings where the test may be helpful
Diagnosis and classification of hemoglobin disorders, including thalassemias and hemoglobin variants
Profile Information
A profile is a group of laboratory tests that are ordered and performed together under a single Mayo Test ID. Profile information lists the test performed, inclusive of the test fee, when a profile is ordered and includes reporting names and individual availability.
Test Id | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
HBELI | Hb Electrophoresis Interpretation | No | Yes |
HGBCE | Hb Variant, A2 and F Quantitation,B | Yes | Yes |
HPLC | HPLC Hb Variant, B | No | Yes |
Reflex Tests
Lists tests that may or may not be performed, at an additional charge, depending on the result and interpretation of the initial tests.
Test Id | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
HPFH | Hb F Distribution, B | No | No |
MASS | Hb Variant by Mass Spec, B | No | No |
SDEX | Sickle Solubility, B | Yes | No |
IEF | Isoelectric Focusing, B | No | No |
UNHB | Hb Stability, B | No | No |
WASQR | Alpha Globin Gene Sequencing, B | Yes, (Order WASEQ) | No |
WBSQR | Beta Globin Gene Sequencing, B | Yes, (Order WBSEQ) | No |
WGSQR | Gamma Globin Full Gene Sequencing | Yes, (Order WGSEQ) | No |
HBEL0 | Hb Electrophoresis Summary Interp | No | No |
WBGDR | Beta Globin Gene Cluster, Del/Dup,B | Yes, (Order WBGDD) | No |
WAGDR | Alpha Globin Clustr Locus Del/Dup,B | Yes, (Order AGDD) | No |
Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.
This evaluation will always include hemoglobin (Hb) A2 and HbF and hemoglobin electrophoresis utilizing capillary electrophoresis and cation exchange high-performance liquid chromatography methods.
Reflex testing, performed at additional charge, may include any or all of the following to identify rare hemoglobin variants present: sickle solubility (hemoglobin S screen); hemoglobin heat and isopropanol stability studies (unstable hemoglobin); isoelectric focusing, intact globin chain mass spectrometry (hemoglobin variant by mass spectrometry); HbF distribution by flow cytometry; DNA Sanger sequencing assays for: 1) beta-chain variants and the most common beta thalassemias (beta-globin gene sequencing), 2) alpha-chain variants and less common nondeletional alpha thalassemias (alpha-globin gene sequencing), or 3) gamma-chain variants and nondeletional hereditary persistence of fetal hemoglobin (HPFH) (gamma-globin full gene sequencing); multiplex ligation-dependent probe amplification assays for: 1) large deletional alpha thalassemias and alpha-gene duplications (alpha-globin gene analysis), or 2) beta-globin gene cluster locus large deletions and duplications, including large deletional HPFH, delta-beta thalassemia, gamma-delta-beta thalassemia, epsilon-gamma-delta-beta thalassemia and large deletional beta or delta thalassemia (beta-globin cluster locus deletion/duplication).
If test results in the profile are abnormal, results may be reviewed by a hematopathology consultant, and a summary interpretation provided.
One or more of the following molecular tests may be reflexed:
-WAGDR / Alpha Globin Cluster Locus Deletion/Duplication, Blood
-WASQR / Alpha-Globin Gene Sequencing, Blood
-WBSQR / Beta-Globin Gene Sequencing, Blood
-WBGDR / Beta-Globin Gene Cluster Deletion/Duplication, Blood
-WGSQR / Gamma-Globin Full Gene Sequencing, Varies
For cases with molecular testing added, a preliminary interpretation will be reported that discusses the protein test results. After all test results are finalized, an additional consultative interpretation that summarizes all testing and incorporates subsequent genetic results will be provided.
Method Name
A short description of the method used to perform the test
HBELI, HBEL0: Medical Interpretation
HGBCE: Capillary Electrophoresis
HPLC: Cation Exchange/High-Performance Liquid Chromatography (HPLC)
IEF: Isoelectric Focusing
MASS: Mass Spectrometry (MS)
HPFH: Flow Cytometry
UNHB: Isopropanol and Heat Stability
NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.
Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test
Aliases
Lists additional common names for a test, as an aid in searching
A2 Hemoglobin
Alpha Globin Variant
Alpha Thalassemia
Barts Hemoglobin
Beta Globin Variant
Beta Thalassemia
H Disease
Hemoglobin A2
Hemoglobin Cascade
Hemoglobin Electrophoresis Cascade Level 1
Hemoglobin Molecular studies
Hemoglobin Variant
HGB (Hemoglobin) Electrophoresis
Isoelectric Focusing
Capillary electrophoresis
HPLC
High performance liquid chromatography
Mass Spectrometry
Microcytosis
Sickling Test
Thalassemia
Sickle Prep
FTA2
HB
Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.
This evaluation will always include hemoglobin (Hb) A2 and HbF and hemoglobin electrophoresis utilizing capillary electrophoresis and cation exchange high-performance liquid chromatography methods.
Reflex testing, performed at additional charge, may include any or all of the following to identify rare hemoglobin variants present: sickle solubility (hemoglobin S screen); hemoglobin heat and isopropanol stability studies (unstable hemoglobin); isoelectric focusing, intact globin chain mass spectrometry (hemoglobin variant by mass spectrometry); HbF distribution by flow cytometry; DNA Sanger sequencing assays for: 1) beta-chain variants and the most common beta thalassemias (beta-globin gene sequencing), 2) alpha-chain variants and less common nondeletional alpha thalassemias (alpha-globin gene sequencing), or 3) gamma-chain variants and nondeletional hereditary persistence of fetal hemoglobin (HPFH) (gamma-globin full gene sequencing); multiplex ligation-dependent probe amplification assays for: 1) large deletional alpha thalassemias and alpha-gene duplications (alpha-globin gene analysis), or 2) beta-globin gene cluster locus large deletions and duplications, including large deletional HPFH, delta-beta thalassemia, gamma-delta-beta thalassemia, epsilon-gamma-delta-beta thalassemia and large deletional beta or delta thalassemia (beta-globin cluster locus deletion/duplication).
If test results in the profile are abnormal, results may be reviewed by a hematopathology consultant, and a summary interpretation provided.
One or more of the following molecular tests may be reflexed:
-WAGDR / Alpha Globin Cluster Locus Deletion/Duplication, Blood
-WASQR / Alpha-Globin Gene Sequencing, Blood
-WBSQR / Beta-Globin Gene Sequencing, Blood
-WBGDR / Beta-Globin Gene Cluster Deletion/Duplication, Blood
-WGSQR / Gamma-Globin Full Gene Sequencing, Varies
For cases with molecular testing added, a preliminary interpretation will be reported that discusses the protein test results. After all test results are finalized, an additional consultative interpretation that summarizes all testing and incorporates subsequent genetic results will be provided.
Specimen Type
Describes the specimen type validated for testing
Whole Blood EDTA
Ordering Guidance
Multiple hematology evaluations are available. For information on testing that is performed with each evaluation, see Benign Hematology Evaluation Comparison.
Necessary Information
At minimum, include recent transfusion information and most recent complete blood cell count results.
Metabolic Hematology Patient Information (T810) is strongly recommended. Testing may proceed without this information, however if the information requested is received, any pertinent reported clinical features and data will drive the focus of the evaluation and be considered in the interpretation.
The laboratory has extensive experience in hemoglobin variant identification and many cases can be confidently classified without molecular testing. However, molecular confirmation is always available, subject to sufficient sample quantity (eg, multiplex ligation-dependent probe amplification testing requires at least 2 mL of sample in addition to protein testing requirements). If no molecular testing or specific molecular tests are desired, utilize the appropriate check boxes on the form. If the form or other communication is not received, the reviewing hematopathologist will select appropriate tests to sufficiently explain the protein findings, which may or may not include molecular testing.
Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing
Container/Tube:
Preferred: Lavender top (EDTA)
Acceptable: Yellow top (ACD solution B)
Specimen Volume: 10 mL
Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.
Special Instructions
Library of PDFs including pertinent information and forms related to the test
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing-Spanish (T826)
2. Metabolic Hematology Patient Information (T810)
3. If not ordering electronically, complete, print, and send a Benign Hematology Test Request (T755) with the specimen
Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the testing laboratory. The minimum volume is sufficient for one attempt at testing.
1 mL (this volume will limit reflex testing possibilities)
Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected
Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Whole Blood EDTA | Refrigerated | 7 days |
Useful For
Suggests clinical disorders or settings where the test may be helpful
Diagnosis and classification of hemoglobin disorders, including thalassemias and hemoglobin variants
Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.
This evaluation will always include hemoglobin (Hb) A2 and HbF and hemoglobin electrophoresis utilizing capillary electrophoresis and cation exchange high-performance liquid chromatography methods.
Reflex testing, performed at additional charge, may include any or all of the following to identify rare hemoglobin variants present: sickle solubility (hemoglobin S screen); hemoglobin heat and isopropanol stability studies (unstable hemoglobin); isoelectric focusing, intact globin chain mass spectrometry (hemoglobin variant by mass spectrometry); HbF distribution by flow cytometry; DNA Sanger sequencing assays for: 1) beta-chain variants and the most common beta thalassemias (beta-globin gene sequencing), 2) alpha-chain variants and less common nondeletional alpha thalassemias (alpha-globin gene sequencing), or 3) gamma-chain variants and nondeletional hereditary persistence of fetal hemoglobin (HPFH) (gamma-globin full gene sequencing); multiplex ligation-dependent probe amplification assays for: 1) large deletional alpha thalassemias and alpha-gene duplications (alpha-globin gene analysis), or 2) beta-globin gene cluster locus large deletions and duplications, including large deletional HPFH, delta-beta thalassemia, gamma-delta-beta thalassemia, epsilon-gamma-delta-beta thalassemia and large deletional beta or delta thalassemia (beta-globin cluster locus deletion/duplication).
If test results in the profile are abnormal, results may be reviewed by a hematopathology consultant, and a summary interpretation provided.
One or more of the following molecular tests may be reflexed:
-WAGDR / Alpha Globin Cluster Locus Deletion/Duplication, Blood
-WASQR / Alpha-Globin Gene Sequencing, Blood
-WBSQR / Beta-Globin Gene Sequencing, Blood
-WBGDR / Beta-Globin Gene Cluster Deletion/Duplication, Blood
-WGSQR / Gamma-Globin Full Gene Sequencing, Varies
For cases with molecular testing added, a preliminary interpretation will be reported that discusses the protein test results. After all test results are finalized, an additional consultative interpretation that summarizes all testing and incorporates subsequent genetic results will be provided.
Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test
A large number of variants of hemoglobin (Hb) have been recognized. Although many do not result in clinical or hematologic effects, clinical symptoms that can be associated with Hb disorders include microcytosis, sickling disorders, hemolysis, erythrocytosis/polycythemia, cyanosis/hypoxia, anemia (chronic, compensated, or episodic), and increased methemoglobin or sulfhemoglobin results (M-hemoglobins).
For many common Hb variants (eg, HbS, HbC, HbD and HbE, among many others), protein studies will be sufficient for definitive identification. However, some Hb conditions may be difficult to identify by protein methods alone and may require molecular methods for confirmation. Hb disorders commonly occur as compound disorders (2 or more genetic variants) that can have complex interactions and variable phenotypes. In these situations, molecular testing may be necessary for accurate classification. It is important to note that although powerful as an adjunct for a complete and accurate diagnosis, molecular methods without protein data can give incomplete and possibly misleading information due to limitations of the methods. Accurate classification of hemoglobin disorders and interpretation of genetic data requires the incorporation of protein analysis results. This profile is well-suited for the classification of hemoglobin disorders.
Mayo Clinic Laboratories receives specimens from a wide geographic area and nearly one-half of all specimens tested exhibit abnormalities. The most common abnormality is an increase in HbA2 to about 4% to 8%, which indicates beta-thalassemia minor when present in the correct clinical context. A wide variety of other hemoglobinopathies are also frequently encountered. Ranked in order of relative frequency, these are: Hb S (sickle cell disease and trait), C, E, Lepore, G-Philadelphia, HbH disease, D-Los Angeles, Koln, Constant Spring, O-Arab. Other variants associated with hemolysis, erythrocytosis/polycythemia, microcytosis, cyanosis/hypoxia are routinely identified; however, some will not be detected by routine screening methods and require communication of clinical findings to prompt indicated reflex testing options. Alpha-thalassemia genetic variants are very common in the United States, occurring in approximately 30% of African Americans and accounting for the frequent occurrence of microcytosis in persons of this ethnic group. Some alpha-thalassemia conditions (eg, HbH, Barts) can be identified in the hemoglobin electrophoresis protocol, although Hb Constant Spring may or may not be evident by protein methods alone dependent upon the percentage present. It is important to note, alpha thalassemias that are from only 1 or 2 alpha-globin gene deletions are not recognized by protein studies alone and alpha-gene deletion and duplication testing is required.
Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.
Hemoglobin Electrophoresis Interpretation
Definitive results and an interpretative report will be provided.
Hemoglobin Variant, A2 and F Quantitation
HEMOGLOBIN A
0-30 days: 5.9-77.2%
1-2 months: 7.9-92.4%
3-5 months: 54.7-97.1%
6-8 months: 80.0-98.0%
9-12 months: 86.2-98.0%
13-17 months: 88.8-98.0%
18-23 months: 90.4-98.0%
> or =24 months: 95.8-98.0%
HEMOGLOBIN A2
0-30 days: 0.0-2.1%
1-2 months: 0.0-2.6%
3-5 months: 1.3-3.1%
> or =6 months: 2.0-3.3%
HEMOGLOBIN F
0-30 days: 22.8-92.0%
1-2 months: 7.6-89.8%
3-5 months: 1.6-42.2%
6-8 months: 0.0-16.7%
9-12 months: 0.0-10.5%
13-17 months: 0.0-7.9%
18-23 months: 0.0-6.3%
> or =24 months: 0.0-0.9%
VARIANT 1
0.0
VARIANT 2
0.0
VARIANT 3
0.0
Interpretation
Provides information to assist in interpretation of the test results
The hemoglobin fractions, including hemoglobin variants are identified and quantitated. An interpretive report that summarizes all testing, including the significance of the findings, is issued.
Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances
Some hemoglobin disorders and variants are not detected by the screening methods including, common alpha-thalassemia conditions and require further reflex testing to identify. If a family history of a known hemoglobin disorder, prior therapy for a hemoglobin disorder, or otherwise unexplained lifelong/familial symptoms, such as hemolysis, microcytosis, erythrocytosis/polycythemia, cyanosis, or hypoxia are present, this should be clearly communicated to the laboratory so appropriate reflex testing can be added, see Metabolic Hematology Patient Information.
Recent transfusion may mask protein results including hemoglobin electrophoresis, hereditary persistence of hemoglobin F by flow cytometry, stability studies, and sickle solubility studies depending on percentage of transfused cells present.
Some hemoglobin variants can originate from the donor blood product and not from the tested recipient. These are typically found in low percentage.
If the patient has undergone a bone marrow transplant, the results may show atypical results and should be interpreted in the context of clinical information.
Some therapies cause artefactual effects in protein studies, including hydroxyurea and decitabine (increased hemoglobin F levels), voxelotor (artefactual peaks) and gene therapy (alternate protein detection, beta T87Q, by mass spectrometry). Clear communication of prior therapy is strongly recommended.
Clinical Reference
Recommendations for in-depth reading of a clinical nature
1. Hoyer JD, Hoffman DR. The thalassemia and hemoglobinopathy syndromes. In: McClatchey KD, Amin HM, Curry JL, eds. Clinical Laboratory Medicine. 2nd ed. Lippincott Williams and Wilkins; 2002:866-895
2. Oliveira JL. Diagnostic strategies in hemoglobinopathy testing, the role of a reference laboratory in the USA. Thalassemia Reports. 2018;8(1):7476. doi:10.4081/thal.2018.7476
3. Brancaleonai V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hematol. 2016;38 Suppl 1:32-40. doi:10.1111/ijlh.12527
4. Hartveld CI. State of the art and new developments in molecular diagnostics for hemoglobinopathies in multiethnic societies. Int J Lab Haematol. 2014;36(1):1-12. doi:10.1111/ijlh.12108
5. Riou J, Szuberski J, Godart C, et al. Precision of CAPILLARYS 2 for the detection of hemoglobin variants based on their migration positions. Am J Clin Pathol. 2018;149(2):172-180. doi:10.1093/ajcp/aqx148
Method Description
Describes how the test is performed and provides a method-specific reference
Hemoglobin Electrophoresis:
The CAPILLARYS System is an automated system that uses capillary electrophoresis to separate charged molecules by their electrophoretic mobility in an alkaline buffer. Separation occurs according to the electrolyte pH and electro-osmotic flow. A sample dilution with hemolyzing solution is injected by aspiration. A high-voltage protein separation occurs with direct detection of the hemoglobin-protein fractions at 415 nm, which is specific to hemoglobin. The resulting electrophoregram peaks are evaluated for pattern abnormalities and are quantified as a percentage of the total hemoglobin present. Examples of position of commonly found hemoglobin fractions are, from cathode to anode: HbA2', C, A2/O-Arab, E, S, D, G-Philadelphia, F, A, Hope, Barts, J, N-Baltimore and H.(Louahabi A, Philippe M, Lali S, Wallemacq P, Maisin D. Evaluation of a new Sebia kit for analysis of hemoglobin fractions and variants on the Capillarys system. Clin Chem Lab Med. 2006;44[3]:340-345; instruction manual CAPI 3 HEMOGLOBIN(E) Phoresis VS >9.15. Sebia; 12/2020)
High-Performance Liquid Chromatography:
Hemolysate of whole blood is injected into an analysis stream passing through a cation exchange column using high-performance liquid chromatography. A preprogrammed gradient controls the elution buffer mixture that also passes through the analytical cartridge. The ionic strength of the elution buffer is raised by increasing the percentage of a second buffer. As the ionic strength of the buffer increases the more strongly retained hemoglobins elute from the cartridge. Absorbance changes are detected by a dual-wavelength filter photometer. Changes in absorbance are displayed as a chromatogram of absorbance versus time.(Huismann TH, Scroeder WA, Brodie AN, Mayson SM, Jakway J. Microchromotography of hemoglobins. III. A simplified procedure for the determination of hemoglobin A2. J Lab Clin Med. 1975;86:700-702; Ou CN, Buffone GJ, Reimer GL, Alpert AJ. High-performance liquid chromatography of human hemoglobins on a new cation exchanger. J Chromatogr. 1983;266:197-205; Szuberski J, Oliveira JL, Hoyer JD. A comprehensive analysis of hemoglobin variants by high-performance liquid chromatography [HPLC]. Int J Lab Hematol. 2012;34(6):594-604; instruction manual: Bio-Rad Variant II Beta-thalassemia Short Program Instructions for Use, L70203705. Bio-Rad Laboratories, Inc; 11/2011)
PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information
Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.
Monday through Thursday
Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.
Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded
Performing Laboratory Location
Indicates the location of the laboratory that performs the test
Fees :
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact Customer Service.
Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.
This test has been modified from the manufacturer's instructions. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.
CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.
CPT codes are provided by the performing laboratory.
CPT codes are provided by the performing laboratory.
83020
83021
82664 (if appropriate)
83068 (if appropriate)
83789 (if appropriate)
88184 (if appropriate)
83020-26 (if appropriate)
LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.
Test Id | Test Order Name | Order LOINC Value |
---|---|---|
HBEL1 | Hb Electrophoresis Evaluation | 94538-6 |
Result Id | Test Result Name |
Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
|
---|---|---|
41927 | Hb A | 20572-4 |
41928 | Hb F | 32682-7 |
41929 | Hb A2 | 4552-6 |
41930 | Variant 1 | 24469-9 |
41931 | Variant 2 | 24469-9 |
41932 | Variant 3 | 24469-9 |
41933 | HGBCE Interpretation | 78748-1 |
65615 | HPLC Hb Variant, B | No LOINC Needed |
608088 | Hb Electrophoresis Interpretation | 49316-3 |
609421 | Hb Electrophoresis Interp Cancel | No LOINC Needed |
Test Setup Resources
Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.
Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.
SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.
Test Update Resources
Change Type | Effective Date |
---|---|
Test Changes - Specimen Information | 2025-03-25 |
File Definition - Result ID | 2024-12-19 |