Test Catalog

Test ID: HGEMP    
Hydroxyglutaric Acids, Glutaric Acid, Ethylmalonic Acid, and Methylsuccinic Acid, Plasma

Useful For Suggests clinical disorders or settings where the test may be helpful

Evaluation of patients with an abnormal newborn screen showing elevations of glutarylcarnitine (C5-DC)


Evaluation of patients with abnormal newborn screens showing elevations of C4- acylcarnitine to aid in the differential diagnosis of short chain acyl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase deficiencies


Diagnosis of glutaric acidemia type 1


Aids in diagnosis of glutaric acidemia type 2

Genetics Test Information Provides information that may help with selection of the correct genetic test or proper submission of the test request

Second-tier newborn screening for follow-up of C4 acylcarnitine and glutarylcarnitine (C5DC) elevations.


Differentiating diagnoses of short chain acyl-CoA dehydrogenase (SCAD) deficiency, isobutyryl-CoA dehydrogenase (IBDH) deficiency, and ethylmalonic encephalopathy.


Differentiating diagnoses of glutaric acidemia type I (GA-1) and glutaric acidemia type II (GA-2)

Clinical Information Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Acylcarnitine analysis is included in newborn screening blood testing and is utilized for detection of several inborn errors of metabolism, including fatty acid oxidation disorders (FAOD) and organic acidemias (OA). A limitation of this analytic method is its inability to differentiate between several isomers. Additional testing of 2-hydroxy glutaric acid (2OH-GA), 3-hydroxy glutaric acid (3OH-GA), glutaric acid (GA), methylsuccinic acid (MSA), and ethylmalonic acid (EMA) by LC-MS/MS allows better differentiation among C4 acylcarnitine and glutarylcarnitine/C10-OH isomers.


C4 acylcarnitine represents both butyrylcarnitine and isobutyrylcarnitine and is elevated in short chain acyl Co-A dehydrogenase (SCAD) deficiency, isobutyryl-CoA dehydrogenase (IBDH) deficiency, and ethylmalonic encephalopathy (EE). SCAD deficiency is a condition affecting fatty acid metabolism, with reported symptoms of hypoglycemia, lethargy, developmental delays, and failure to thrive. There is controversy on whether a biochemical diagnosis necessarily confers clinical symptoms. IBDH deficiency is characterized by cardiomyopathy, hypotonia, and developmental delays, although many individuals with IBDH deficiency are asymptomatic. EE is a rare progressive encephalopathy associated with hypotonia, seizures, and abnormal movements.


Individuals with SCAD deficiency demonstrate elevated plasma EMA and MSA levels and individuals with EE show only elevations in EMA, while individuals with IBDH deficiency do not typically have elevations in either EMA or MSA.


Glutarylcarnitine (C5-DC) is elevated in glutaric acidemia type 1 (GA-1), but is not differentiated from C10-OH acylcarnitine. GA-1 is caused by a deficiency of glutaryl-CoA dehydrogenase and is characterized by bilateral striatal brain injury leading to dystonia, often a result of acute neurologic crises triggered by illness. Individuals with GA-1 typically show elevations of glutaric acid and 3OH-GA, even in those considered to be "low excretors."


Glutaric acidemia (GA-2), also known as multiple acyl-CoA dehydrogenase deficiency (MADD), is caused by defects in either the electron transfer flavoprotein (ETF) or ETF-ubiquinone oxidoreductase. This disease can be severe and is often fatal in the first weeks of life, with typical symptoms of hypoglycemia, muscle weakness, metabolic acidosis, dysmorphic features, cardiac defects or arrhythmias, renal cysts, and fatty infiltration of the liver. GA-2 can have a milder presentation, also known as ethylmalonic-adipic aciduria, with Reye-like illnesses in childhood and muscle weakness in childhood and adulthood. In addition to elevations in glutaric acid, individuals with GA-2 can also show increased EMA, MSA, and 2OH-GA.


The American College of Medical Genetics (ACMG) newborn screening work group published diagnostic algorithms for the follow-up of infants who had a positive newborn screening result. For more information, see www.acmg.net.

Reference Values Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

2-OH Glutaric acid < or =4.5 nmol/mL

3-OH Glutaric acid < or =0.7 nmol/mL

Glutaric acid < or =0.8 nmol/mL

Methylsuccinic acid < or =0.3 nmol/mL

Ethylmalonic acid < or =1.5 nmol/mL

Interpretation Provides information to assist in interpretation of the test results

Elevations of ethylmalonic acid (EMA) and methylsuccinic acid (MSA) are consistent with a diagnosis of short chain acyl Co-A dehydrogenase (SCAD) deficiency.


Elevation of EMA is consistent with a diagnosis of ethylmalonic encephalopathy.


Normal levels of EMA in the context of elevated C4 is consistent with a diagnosis of isobutyryl-CoA dehydrogenase (IBDH) deficiency.


Elevation of glutaric acid (GA) and 3-hydroxy glutaric acid (3OH-GA) are consistent with a diagnosis of glutaric acidemia type 1 (GA-1).


Elevation of GA, 2-hydroxy glutaric acid (2OH-GA), 3OH-GA, EMA, and MSA are consistent with a diagnosis of glutaric acidemia (GA-2).

Cautions Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

No significant cautionary statements

Clinical Reference Recommendations for in-depth reading of a clinical nature

1. Rinaldo P, Cowan TM, Matern D: Acylcarnitine profile analysis. 2008:10(2):151-156

2. Kolker S, Christensen E, Leonar JV, et al: Diagnosis and management of glutaric aciduria type I-revised recommendations. J Inherit Metab Dis 2011:34:677-694

3. Frerman FE, Goodman SI: Chapter 103: Defects of Electron Transfer Flavoprotein and Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase: Glutaric Acidemia Type II. In Scriver's Online Metabolic and Molecular Bases of Inherited Disease. Edited by CR Scriver, AL Beaudet, D Valle, et al. Accessed 8/17/17. Available at www.ommbid.com