

Galactosemia, GALT Gene, Full Gene Analysis, Varies

Overview

Useful For

Identifying variants in individuals who test negative for the common variants and who have a biochemical diagnosis of galactosemia or galactose-1-phosphate uridyltransferase activity levels indicative of carrier status

Reflex Tests

Test Id	Reporting Name	Available Separately	Always Performed
_STR1	Comp Analysis using STR	No, (Bill only)	No
	(Bill only)		
_STR2	Add'l comp analysis w/STR	No, (Bill only)	No
	(Bill Only)		
CULFB	Fibroblast Culture for	Yes	No
	Genetic Test		
CULAF	Amniotic Fluid	Yes	No
	Culture/Genetic Test		
MATCC	Maternal Cell	Yes	No
	Contamination, B		

Genetics Test Information

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 1 gene associated with galactosemia: *GALT*.

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for galactosemia.

Additional first tier testing may be considered/recommended. For more information see <u>Galactosemia Testing Algorithm</u>

Testing Algorithm

Prenatal specimens only:

If an amniotic fluid specimen or cultured amniocytes are received, an amniotic fluid culture will be performed at an additional charge.

If a chorionic villi specimen or cultured chorionic villi are received, a fibroblast culture will be performed at an additional charge.

For any prenatal specimen that is received, maternal cell contamination testing will be performed at an additional charge.

Skin biopsy or cultured fibroblast specimens:

Galactosemia, GALT Gene, Full Gene Analysis, Varies

For skin biopsy or cultured fibroblast specimens, a fibroblast culture will be performed at an additional charge.

For more information see Galactosemia Testing Algorithm.

Special Instructions

- Molecular Genetics: Biochemical Disorders Patient Information
- Informed Consent for Genetic Testing
- Galactosemia Testing Algorithm
- Blood Spot Collection Card-Spanish Instructions
- Blood Spot Collection Card-Chinese Instructions
- Informed Consent for Genetic Testing (Spanish)
- Blood Spot Collection Instructions

Method Name

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available

Yes

Specimen

Specimen Type

Varies

Ordering Guidance

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies. To modify this panel via CGPH, please use the Inborn Errors of Metabolism disease state for step 1 on the <u>Custom Gene Ordering Tool</u>.

Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Specimen Required

Patient Preparation: A previous hematopoietic stem cell transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a hematopoietic stem cell transplant.

Submit only 1 of the following specimens:

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Galactosemia, GALT Gene, Full Gene Analysis, Varies

Acceptable: Green top (Sodium heparin)

Specimen Volume: 3 mL **Collection Instructions**:

- 1. Invert several times to mix blood.
- 2. Send whole blood specimen in original tube. **Do not aliquot**.
- 3. Whole blood collected postnatal from an umbilical cord is also acceptable. See Additional Information

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 4 days/Frozen 4 days

Additional Information:

- 1. Specimens are preferred to be received within 4 days of collection. Extraction will be attempted for specimens received after 4 days, and DNA yield will be evaluated to determine if testing may proceed.
- 2. To ensure minimum volume and concentration of DNA are met, the requested volume must be submitted. Testing may be canceled if DNA requirements are inadequate.
- 3. For postnatal umbilical cord whole blood specimens, maternal cell contamination studies are recommended to ensure test results reflect that of the patient tested. A maternal blood specimen is required to complete maternal cell contamination studies. Order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on both the cord blood and maternal blood specimens under separate order numbers.

Specimen Type: Saliva

Patient Preparation: Patient should not eat, drink, smoke, or chew gum 30 minutes prior to collection.

Supplies:

DNA Saliva Kit High Yield (T1007) Saliva Swab Collection Kit (T786)

Container/Tube:

Preferred: High-yield DNA saliva kit

Acceptable: Saliva swab

Specimen Volume: 1 Tube if using T1007 or 2 swabs if using T786 **Collection Instructions:** Collect and send specimen per kit instructions.

Specimen Stability Information: Ambient (preferred) 30 days/Refrigerated 30 days

Additional Information: Saliva specimens are acceptable but not recommended. Due to lower quantity/quality of DNA yielded from saliva, some aspects of the test may not perform as well as DNA extracted from a whole blood sample. When applicable, specific gene regions that were unable to be interrogated will be noted in the report. Alternatively, additional specimen may be required to complete testing.

Specimen Type: Blood spot

Supplies: Card-Blood Spot Collection (Filter Paper) (T493)

Container/Tube:

Preferred: Collection card (Whatman Protein Saver 903 Paper)

Acceptable: PerkinElmer 226 filter paper or blood spot collection card

Specimen Volume: 2 to 5 Blood spots

Collection Instructions:

- 1. An alternative blood collection option for a patient older than 1 year is a fingerstick. For detailed instructions, see How to Collect a Dried Blood Spot Sample.
- 2. Let blood dry on the filter paper at ambient temperature in a horizontal position for a minimum of 3 hours.
- 3. Do not expose specimen to heat or direct sunlight..

Galactosemia, GALT Gene, Full Gene Analysis, Varies

4. Do not stack wet specimens.

5. Keep specimen dry.

Specimen Stability Information: Ambient (preferred)/Refrigerated

Additional Information:

- 1. Blood spot specimens are acceptable but not recommended. Multiple extractions will be required to obtain sufficient yield for supplemental analysis, and there is significant risk for test failure due to insufficient DNA.
- 2. Due to lower concentration of DNA yielded from blood spot, some aspects of the test may not perform as well as DNA extracted from a whole blood sample. When applicable, specific gene regions that were unable to be interrogated will be noted in the report. Alternatively, additional specimen may be required to complete testing.
- 3. For collection instructions, see <u>Blood Spot Collection Instructions</u>
- 4. For collection instructions in Spanish, see <u>Blood Spot Collection Card-Spanish Instructions</u> (T777)
- 5. For collection instructions in Chinese, see <u>Blood Spot Collection Card-Chinese Instructions</u> (T800)

Specimen Type: Skin biopsy

Supplies: Fibroblast Biopsy Transport Media (T115)

Container/Tube: Sterile container with any standard cell culture media (eg, minimal essential media, RPMI 1640). The

solution should be supplemented with 1% penicillin and streptomycin.

Specimen Volume: 4-mm Punch

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.

Specimen Type: Tissue biopsy **Supplies**: Hank's Solution (T132)

Container/Tube: Sterile container with sterile Hank's balanced salt solution, Ringer's solution, or normal saline

Specimen Volume: 0.5 to 3 cm(3) or larger

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.

Specimen Type: Cultured fibroblasts

Source: Skin

Container/Tube: T-25 flask Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy. Cultured cells from a prenatal

specimen will not be accepted.

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

Galactosemia, GALT Gene, Full Gene Analysis, Varies

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.

Specimen Type: Extracted DNA

Container/Tube:

Preferred: Screw Cap Micro Tube, 2 mL with skirted conical base

Acceptable: Matrix tube, 1 mL

Collection Instructions:

- 1. The preferred volume is at least 100 mcL at a concentration of 75 ng/mcL.
- 2. Include concentration and volume on tube.

Specimen Stability Information: Frozen (preferred) 1 year/Ambient/Refrigerated

Additional Information: DNA must be extracted in a CLIA-certified laboratory or equivalent and must be extracted from a specimen type listed as acceptable for this test (including applicable anticoagulants). Our laboratory has experience with Chemagic, Puregene, Autopure, MagnaPure, and EZ1 extraction platforms and cannot guarantee that all extraction methods are compatible with this test. If testing fails, one repeat will be attempted, and if unsuccessful, the test will be reported as failed and a charge will be applied. If applicable, specific gene regions that were unable to be interrogated due to DNA quality will be noted in the report.

PRENATAL SPECIMENS

Due to its complexity, consultation with the laboratory is required for all prenatal testing; call 800-533-1710 to speak to a genetic counselor.

Specimen Type: Amniotic fluid

Container/Tube: Amniotic fluid container

Specimen Volume: 20 mL

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information: Specimen will only be tested after culture.

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULAF / Culture for Genetic Testing, Amniotic Fluid. An additional 2 to 3 weeks are required to culture amniotic fluid before genetic testing can occur.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Specimen Type: Prenatal cultured amniocytes This does not include cultured chorionic villi.

Container/Tube: T-25 flask Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured cells from another laboratory **Specimen Stability Information**: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for

Galactosemia, GALT Gene, Full Gene Analysis, Varies

specimens received after 24 hours and will be evaluated to determine if testing may proceed.

- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Specimen Type: Chorionic villi

Container/Tube: 15-mL tube containing 15 mL of transport media

Specimen Volume: 20 mg

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information: Specimen will only be tested after culture.

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Specimen Type: Cultured chorionic villi

Container/Tube: T-25 Flasks Specimen Volume: 2 Full flasks

Collection Instructions: Submit confluent cultured cells from another laboratory

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Forms

- 1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available:
- -Informed Consent for Genetic Testing (T576)
- -<u>Informed Consent for Genetic Testing (Spanish)</u> (T826)
- 2. Molecular Genetics: Biochemical Disorders Patient Information (T527)
- 3. If not ordering electronically, complete, print, and send a <u>Biochemical Genetics Test Request</u> (T798) with the specimen.

Specimen Minimum Volume

See Specimen Required

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Galactosemia, GALT Gene, Full Gene Analysis, Varies

Specimen Stability Information

Specimen Type	Temperature	Time	Special Container
Varies	Varies		

Clinical & Interpretive

Clinical Information

Note: Where applicable, verbiage refers to sex assigned at birth.

Galactosemia is an autosomal recessive disorder that results from a deficiency of any 1 of the 4 enzymes catalyzing the conversion of galactose to glucose: galactose-1-phosphate uridyltransferase (GALT), galactokinase (GALK), uridine diphosphate galactose-4-epimerase (GALE), and galactose mutarotase (GALM). GALT deficiency is the most common cause of galactosemia and is often referred to as classic galactosemia. Classic galactosemia is caused by pathogenic variants in the *GALT* gene. The complete or near-complete deficiency of GALT enzyme is life threatening if left untreated. Complications in the neonatal period include failure to thrive, liver failure, sepsis, and death.

Galactosemia is treated by a galactose-restricted diet, which allows for rapid recovery from the acute symptoms and a generally good prognosis. Despite adequate treatment from an early age, individuals with galactosemia remain at increased risk for developmental delays, speech problems, and abnormalities of motor function. Female individuals with galactosemia are at increased risk for premature ovarian failure. Based upon reports by newborn screening programs, the frequency of classic galactosemia in the United States is approximately 1 in 30,000, although literature reports range from 1 in 10,000 to 1 in 60,000 live births.

Duarte-variant galactosemia (compound heterozygosity for the c.-119_-116del/c.940A>G [p.N314D] variants in addition to a classic variant) is generally associated with higher levels of enzyme activity (5%-20%) than classic galactosemia (<5%); however, this may be indistinguishable by newborn screening assays. Previously, it was unknown whether children with Duarte-variant galactosemia were at an increased risk for adverse developmental outcomes due to milk exposure and were often treated with a low galactose diet during infancy. More recently, the outcomes data suggests a lack of evidence for developmental complications due to milk exposure, therefore treatment recommendations remain controversial. The Duarte variant, c.-119_-116del/c.940A>G [p.N314D], is found in 5% of the general United States population. The Los Angeles variant, which consists of p.N314D and a second variant, p.L218L, is associated with higher levels of GALT enzyme activity than the Duarte-variant allele.

Newborn screening for galactosemia is performed in all 50 US states, though the method by which potentially affected individuals are detected varies from state to state and may include the measurement of total galactose (galactose and Gal1P) and/or determining the activity of the GALT enzyme. The diagnosis of galactosemia is established by follow-up quantitative measurement of GALT enzyme activity. If biochemical testing has confirmed the diagnosis of galactosemia, sequencing of the *GALT* gene (GALZ / Galactosemia, *GALT* Gene, Full Gene Analysis, Varies) is available to identify pathogenic variants.

For more information, see Galactosemia Testing Algorithm.

Galactosemia, GALT Gene, Full Gene Analysis, Varies

Reference Values

An interpretive report will be provided.

Interpretation

All detected alterations are evaluated according to American College of Medical Genetics and Genomics recommendations.(1) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions

Clinical Correlations:

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of at least one reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

For detailed information regarding gene-specific performance and technical limitations, see Method Description or

Galactosemia, GALT Gene, Full Gene Analysis, Varies

contact a laboratory genetic counselor.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent non-leukocyte reduced blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received an allogeneic hematopoietic stem cell transplant.

Reclassification of Variants:

Currently, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare professionals to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time. Due to broadening genetic knowledge, it is possible that the laboratory may discover new information of relevance to the patient. Should that occur, the laboratory may issue an amended report.

Variant Evaluation:

Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline. (1) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference

- 1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
- 2. Elsas LJ 2nd, Lai K. The molecular biology of galactosemia. Genet Med. 1998;1(1):40-48
- 3. Novelli G, Reichardt JK. Molecular basis of disorders of human galactose metabolism: past, present, and future. Mol Genet Metab. 2000;71(1-2):62-65
- 4. Bosch AM, Ijlst L, Oostheim W, et al. Identification of novel variants in classical galactosemia. Hum Mutat. 2005;25(5):502
- 5. Welling L, Bernstein LE, Berry GT, et al. International clinical guideline for the management of classical galactosemia; diagnosis, treatment, and follow-up. J Inherit Metab Dis. 2017;40(2):171-176
- 6. Succoio M, Sacchettini R, Rossi A, Parenti G, Ruoppolo M. Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules. 2022;12(7):968

Performance

Galactosemia, GALT Gene, Full Gene Analysis, Varies

Method Description

Next-generation sequencing (NGS) and/or Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the gene analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated to be over 99% for single nucleotide variants, over 94% for deletions-insertions (delins) less than 40 base pairs (bp), and over 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the gene analyzed.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences.

The reference transcript for *GALT* gene is NM_000155.4. Reference transcript numbers may be updated due to transcript re-versioning. Always refer to the final patient report for gene transcript information referenced at the time of testing. Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria. (Unpublished Mayo method)

PDF Report

Supplemental

Day(s) Performed

Varies

Report Available

14 to 21 days

Specimen Retention Time

Whole blood 28 days (if available); Saliva: 30 days (if available); Extracted DNA: 3 months; Blood spots: 1 year (if available)

Performing Laboratory Location

Mayo Clinic Laboratories - Rochester Main Campus

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact <u>Customer Service</u> 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact <u>Customer Service</u>.

Test Classification

Galactosemia, GALT Gene, Full Gene Analysis, Varies

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

81406

88233-Tissue culture, skin, solid tissue biopsy (if appropriate)

88240-Cryopreservation (if appropriate)

LOINC® Information

Test ID	Test Order Name	Order LOINC® Value
GALZ	Galactosemia, Full Gene Analysis	76037-1

Result ID	Test Result Name	Result LOINC® Value
608596	Test Description	62364-5
608597	Specimen	31208-2
608598	Source	31208-2
608599	Result Summary	50397-9
608600	Result	82939-0
608601	Interpretation	69047-9
608602	Resources	99622-3
608603	Additional Information	48767-8
608604	Method	85069-3
608605	Genes Analyzed	48018-6
608606	Disclaimer	62364-5
608607	Released By	18771-6