Overview

Useful For

Rapid detection of *Mycobacterium tuberculosis* complex DNA, preferred method

Detection of *M tuberculosis*, when used in conjunction with mycobacterial culture

Reflex Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBT</td>
<td>Concentration, Mycobacteria</td>
<td>No, (Bill Only)</td>
<td>No</td>
</tr>
</tbody>
</table>

Testing Algorithm

When this test is ordered, the reflex test may be performed and charged.

See Meningitis/Encephalitis Panel Algorithm in Special Instructions.

Special Instructions

- [Meningitis/Encephalitis Panel Algorithm](#)

Method Name

Real-Time Polymerase Chain Reaction (PCR)

NY State Available

Yes

Specimen

Specimen Type

Varies

Shipping Instructions

Specimen must arrive within 7 days of collection; specimen >7 days will be rejected.

Necessary Information

Specimen source is required.

Specimen Required

The high sensitivity of amplification by PCR requires the specimen to be processed in an environment in which contamination of the specimen by *Mycobacterium tuberculosis* DNA is unlikely.

If a single specimen is being shared between mycobacteria culture, acid-fast smear, and/or *M tuberculosis* PCR, a minimum volume of 2 mL for body fluid, 3 mL for respiratory specimen, or a pea-sized piece of tissue should be obtained. Specimen volumes less than indicated may decrease sensitivity of testing. If insufficient volume is submitted, test or tests will be canceled.
Preferred Specimens: Body fluid, cerebrospinal fluid (CSF), ocular fluid, respiratory (eg, bronchoalveolar lavage [BAL], bronchial washing, sputum), stool, fresh tissue, bone, bone marrow, or urine

Acceptable Specimens: If no fresh specimen is available, digested respiratory specimens treated with N-acetyl-L-cysteine (NALC)/NaOH are acceptable (eg, BAL, bronchial washing, respiratory fluid, sputum, or tracheal secretion), as are NALC/NaOH-treated gastric washings.

Submit only 1 of the following specimens:

Specimen Type: Body fluid
Sources: Body, bone marrow aspirate, ocular, or CSF
Container/Tube: Sterile container
Specimen Volume: 1 mL

Additional Information: Only fresh, non-NALC/NaOH-digested body fluid is acceptable.

Specimen Type: Gastric washing
Container/Tube: Sterile container
Specimen Volume: 2 mL

Collection Instructions: Neutralize specimen within 4 hours of collection with 20 mg of sodium carbonate per 2 mL of gastric washing.

Specimen Type: Respiratory
Sources: BAL, bronchial washing, or sputum
Container/Tube: Sterile container
Specimen Volume: 1 mL if only PCR ordered or 3 mL if PCR ordered with smear and culture

Specimen Type: Stool
Container/Tube: Sterile container
Specimen Volume: 5-10 g

Additional Information: Only fresh, non-NALC/NaOH-digested stool is acceptable.

Specimen Type: Tissue
Sources: Fresh tissue, bone, or bone marrow biopsy
Container/Tube: Sterile container
Specimen Volume: 5-10 mm
Collection Instructions: Keep moist with sterile water or sterile saline

Additional Information: Only fresh, non-NALC/NaOH-digested tissue is acceptable.

Specimen Type: Urine

Container/Tube: Sterile container

Specimen Volume: 1mL

Collection Instructions: Collect a random urine specimen.

Acceptable

Specimen Type: NALC/NaOH-digested respiratory specimens

Sources: Lavage fluid, bronchial washing, gastric washing, respiratory fluid, sputum, or tracheal secretion

Container/Tube: Sterile container

Specimen Volume: 2 mL

Collection Instructions:

1. Submit digested specimen treated with NALC/NaOH.

2. Clearly indicate on container and order form that specimen is a digested specimen.

Forms

If not ordering electronically, complete, print, and send a Microbiology Test Request (T244) with the specimen.

Specimen Minimum Volume

Body fluid: 0.5 mL
Respiratory specimen-nondigested: 0.5 mL
Fresh tissue or bone: 5 mm
NALC-NaOH-digested specimen: 1 mL
Gastric washing: 1 mL
Stool: 5 g
Urine: 0.5 mL

Reject Due To

<table>
<thead>
<tr>
<th>Thawing</th>
<th>Cold OK; Warm OK</th>
</tr>
</thead>
</table>

Document generated October 13, 2019 at 7:42am CDT
Test Definition: MTBRP
M tuberculosis Complex PCR

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
</tr>
<tr>
<td>Specimen in anaerobe vial or viral transport medium (including but not limited to M4, M5, BD viral transport media, thioglycolate broth)</td>
</tr>
<tr>
<td>Swabs</td>
</tr>
<tr>
<td>Tissues in formalin fluid</td>
</tr>
<tr>
<td>Specimens >7 days old</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Refrigerated (preferred)</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Each year, Mycobacterium tuberculosis accounts for approximately 1.4 million deaths and is responsible for 9 million newly diagnosed cases of tuberculosis worldwide. M tuberculosis is spread from person-to-person via respiratory transmission, and has the potential to become resistant to many or all of the antibiotics currently used if antimycobacterial treatment is not promptly initiated. Therefore, rapid and accurate detection of M tuberculosis in patient specimens is of clinical and public health importance.

Conventional culture methods can generally detect M tuberculosis in 2 to 3 weeks, although up to 8 weeks of incubation may be required in some instances. Developed at Mayo Clinic, this rapid PCR assay detects M tuberculosis complex DNA directly from respiratory specimens and other specimens without waiting for growth in culture and, therefore, the results are available the same day the specimen is received in the laboratory. A mycobacterial culture should always be performed in addition to the PCR assay. The PCR assay is rapid but the culture has increased sensitivity over the PCR assay. The PCR assay targets a unique sequence within the katG gene, which is present in members of the M tuberculosis complex. In addition, the assay can detect genotypic resistance to isoniazid mediated by mutations in the katG target, when present.

Reference Values

Not applicable

Interpretation

A positive result indicates the presence of Mycobacterium tuberculosis complex DNA. Members of the M tuberculosis complex detected by this assay include M tuberculosis, M bovis, M bovis Bacillus Calmette-Guerin, M africanum, M canetti, and M microti. Other species within the M tuberculosis complex (eg, M caprae, M pinnipedii, and M mungi) should, in theory, be detected using the primer and probe sequences in this assay, but they have not been tested. This assay method does not distinguish between the species of the M tuberculosis complex.
A negative result indicates the absence of detectable *M tuberculosis* complex DNA.

Isoniazid (INH) resistance mediated through a *katG* mutation will be reported when observed but lack of a *katG* mutation does not imply that the isolate is susceptible to INH. There are other genetic loci in addition to *katG* that can contribute to resistance for this drug.

Cautions

This test should always be performed in conjunction with mycobacterial culture.

This rapid PCR assay detects *Mycobacterium tuberculosis* complex nucleic acid and, therefore, does not distinguish between viable, disease-related organisms and nucleic acid persisting from prior infection. Test results should be correlated with patient symptoms and clinical presentation before a definitive diagnosis is made.

A negative result does not rule out the presence of *M tuberculosis* complex or active disease because the organism may be present at levels below the limit of detection for this assay.

This test has not been studied for use with specimens from patients being treated with antituberculous agents and, therefore, should not be used to determine bacteriologic cure or to monitor response to therapy. It is not known how long the PCR assay can remain positive following treatment for *M tuberculosis*.

The sensitivity of this test with stool specimens is 80% and testing of additional stool specimens should be considered if the result from the first specimen is negative.

Supportive Data

The analytical specificity of the assay was determined using Basic Local Alignment Search Tool (BLAST) analysis of the National Center for Biotechnology Information (NCBI) GenBank database and no sequences were detected that would interfere with the LightCycler PCR assay. Further, the assay was tested using a panel of 104 respiratory pathogens (bacteria and viruses) that were extracted and subjected to the LightCycler PCR assay. As predicted, only *Mycobacterium tuberculosis* complex was detected from this panel. In addition, nearly 100 species of nontuberculous mycobacteria were evaluated using this PCR assay and there was no cross-reactivity detected. The analytical sensitivity of the assay was determined to be 10 target copies/microliter using a dilution series of *M tuberculosis* spiked into respiratory specimens in triplicate.

The sensitivity and specificity of the assay for detection of *M tuberculosis* complex verses culture was found to be 100% and 100% respectively for 26 *M tuberculosis*-positive cultures and 266 *M tuberculosis*-negative cultures. The PCR inhibition rate of the assay was determined to be 0% by spiking 100 negative extracted respiratory specimens with *M tuberculosis* at 100 targets/microliter. The PCR assay was able to detect 100% of specimens spiked at the limit of detection for bronchoalveolar lavage (BAL) fluid, muscle/skin tissue, organ tissues, bone, cerebrospinal fluid (CSF), and urine. One of 30 (3%) of spiked respiratory tissues was inhibited and 3 of 30 (10%) of spiked sterile body fluids other than CSF were inhibited. Not surprising increased inhibition was seen in stool (24 of 30 spiked specimens were positive) and formalin-fixed, paraffin-embedded tissue (19 of 30 spiked specimens were positive).

Method comparison of the LightCycler PCR assay versus mycobacterial culture was done using 192 respiratory specimens. The results are shown in Table 1.

Table 1. Results for the LightCycler PCR assay versus mycobacterial culture for 192 respiratory specimens.
Test Definition: MTBRP

M tuberculosis Complex PCR

<table>
<thead>
<tr>
<th>Assay</th>
<th>MTD</th>
<th></th>
<th></th>
<th>Agreement (%)</th>
<th>kappa coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightCycler</td>
<td>+</td>
<td>49</td>
<td>1</td>
<td>538/542 (99.3%)</td>
<td>0.96</td>
</tr>
<tr>
<td>PCR</td>
<td>-</td>
<td>3</td>
<td>489</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two melt peaks can be produced during this assay. A melt peak at a temperature of 64.0 degrees C + or - 2.5 degrees C can correspond to either isoniazid-susceptible or isoniazid-resistant *M tuberculosis* and, therefore, no indication of isoniazid susceptibility is provided for these isolates. However, an isolate with a melt peak occurring at a temperature of 58.0 degrees C + or - 2.5 degrees C correlated with isoniazid resistance determined using a broth reference method in 100% (26/26) of isolates tested. Isolates with a melt peak at a temperature of 58.0 degrees C + or - 2.5 degrees C are reported as "Positive, probable isoniazid resistance detected." The PCR result is available 7 to 14 days prior to the broth method and, therefore, may be helpful in selecting appropriate antibiotic therapy for these patients. Confirmation of isoniazid resistance must be done using a phenotypic method if the isolate grows in culture.

Clinical Reference

Performance

Method Description

Following specimen digestion and decontamination using N-acetyl cysteine and sodium hydroxide, genomic DNA is extracted using the MagNA Pure Compact (Roche Applied Sciences) extraction platform. The purified genomic DNA is placed on the LightCycler instrument, which amplifies and monitors, by fluorescence, the development of target nucleotide sequences after each PCR cycle. A specific target sequence from a portion of the katG gene from *Mycobacterium tuberculosis complex* is amplified and the resulting segment is detected by melt-curve analysis using sequence-specific fluorescence resonance energy transfer hybridization probes. The LightCycler PCR assay is a closed PCR system that greatly reduces the potential for false-positive results due to specimen cross-contamination.
as compared with traditional open-system PCR or other amplification methods like transcription-mediated amplification. (Unpublished Mayo method)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Sunday

Analytic Time

1 day

Maximum Laboratory Time

3 days

Specimen Retention Time

7 days

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to [Test Prices](#) for detailed fee information.
- Clients without access to Test Prices can contact [Customer Service](#) 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact [Customer Service](#).

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information

87556-*Mycobacterium tuberculosis* complex, molecular detection, PCR

87015-*Mycobacteria culture, concentration (if appropriate)*

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBRP</td>
<td>M tuberculosis Complex PCR</td>
<td>38379-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRC62</td>
<td>MTB Complex PCR, Specimen Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>56044</td>
<td>MTB Complex PCR, Result</td>
<td>38379-4</td>
</tr>
</tbody>
</table>