Overview

Useful For
Aiding in the distinction between a reactive blood cytosis and a chronic myeloproliferative disorder in blood specimens

Testing Algorithm
The following algorithms are available in Special Instructions:

- Erythrocytosis Evaluation Testing Algorithm

- Myeloproliferative Neoplasm: A Diagnostic Approach to Peripheral Blood Evaluation

Special Instructions
- Myeloproliferative Neoplasm: A Diagnostic Approach to Peripheral Blood Evaluation
- Hematopathology Patient Information
- Erythrocytosis Evaluation Testing Algorithm

Method Name
Point Mutation Detection in DNA Using Quantitative Polymerase Chain Reaction (PCR)

NY State Available
Yes

Specimen

Specimen Type
Whole Blood EDTA

Shipping Instructions
Specimen must arrive within 7 days (168 hours) of draw.

Specimen Required
Container/Tube:

Preferred: EDTA (lavender top)

Acceptable: ACD (yellow top)

Specimen Volume: 4 mL

Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube.

Forms
1. Hematopathology Patient Information (T676) in Special Instructions
2. If not ordering electronically, complete, print, and send a [Hematopathology/Cytogenetics Test Request](T726) with the specimen.

**Specimen Minimum Volume**

1 mL

**Reject Due To**

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood EDTA</td>
<td>Ambient (preferred)</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>Refrigerated</td>
<td>7 days</td>
</tr>
</tbody>
</table>

**Specimen Stability Information**

**Clinical and Interpretive**

**Clinical Information**

The Janus kinase 2 gene (JAK2) codes for a tyrosine kinase (JAK2) that is associated with the cytoplasmic portion of a variety of transmembrane cytokine and growth factor receptors important for signal transduction in hematopoietic cells. Signaling via JAK2 activation causes phosphorylation of downstream signal transducers and activators of transcription (STAT) proteins (eg, STAT5) ultimately leading to cell growth and differentiation. **BCR-ABL1**-negative myeloproliferative neoplasms (MPN) frequently harbor an acquired single nucleotide mutation in **JAK2** characterized as c.G1849T; p. Val617Phe (V617F). This mutation is identified overall in approximately two-thirds of all MPN,(1-3) but the prevalence varies by MPN subtype. The JAK2 V617F is present in 95% to 98% of polycythemia vera, 50% to 60% of primary myelofibrosis, and 50% to 60% of essential thrombocythemia. It has also been described infrequently in other myeloid neoplasms, including chronic myelomonocytic leukemia and myelodysplastic syndrome.(4) This mutation is not seen in chronic myelogenous leukemia (CML) or in reactive conditions with elevated blood counts. Detection of the JAK2 V617F is useful to help establish the diagnosis of MPN. However, a negative JAK2 V617F result does not indicate absence of a MPN. Other important molecular markers in **BCR-ABL1**-negative MPN include **CALR** exon 9 mutation (20%-30% of PMF and ET) and **MPL** exon 10 mutation (5%-10% of PMF and 3%-5% of ET).(5-9) Mutations in **JAK2**, **CALR**, and **MPL** are essentially mutually exclusive.

**Reference Values**

An interpretive report will be provided.

**Interpretation**

The results will be reported as 1 of the 2 states:

- Negative for JAK2 V617F mutation
- Positive for JAK2 V617F mutation
Positive mutation status is highly suggestive of a myeloid neoplasm, but must be correlated with clinical and other laboratory features for definitive diagnosis.

Negative mutation status does not exclude the presence of a myeloproliferative neoplasm or other neoplasm.

Results below the laboratory cutoff for positivity are of unclear clinical significance at this time.

**Cautions**

A positive result is not specific for a particular subtype of myeloproliferative neoplasm and clinicopathologic correlation is necessary in all cases. If this test is ordered in the setting of erythrocytosis and suspicion of polycythemia vera, interpretation requires correlation with a concurrent or recent prior bone marrow evaluation.

A negative result does not exclude the presence of a myeloproliferative neoplasm or other neoplastic process.

In rare cases, a mutation other than the V617F may be present in an area that interferes with primer or probe binding and cause a false-negative result.

**Supportive Data**

Analytical sensitivity is determined at 0.06% (by dilution of a JAK2 V617F-positive cell line into a negative cell line DNA).

**Clinical Reference**


**Performance**

**Method Description**

Genomic DNA is extracted and 2 PCR reactions are used for each sample. In each reaction, a short fragment of genomic DNA, including the mutation site, is amplified using quantitative PCR in a real-time PCR instrument (LightCycler 480, Roche). In the first reaction, the 5’ terminal base of the reverse primer matches the mutated sequence and the PCR conditions are such that it will only bind mutated DNA. In the second reaction, the 5’ terminal base of the reverse primer matches the wild-type sequence and the PCR conditions are such that it will only bind the wild-type sequence. In both reactions, the PCR is monitored using TaqMan probe chemistry. The amount of mutated DNA and the amount of wild-type DNA is measured for each sample. In each run, the amount of mutated and wild-type DNA in a calibrator DNA sample is also measured. The calibrator is a mixture of DNA from a positive cell line (HEL) and a negative cell line (HL60) that is frozen in aliquots and expected to give an identical result in each run. Deviations in the calibrator result are assumed to be due to deviations in the run conditions and the sample results are corrected accordingly. Following each reaction, LightCycler 480 Relative Quantification Software is used to calculate the normalized mutated:wild-type ratio, which is expressed as a unitless ratio following correction with the
calibrator data.

The formula for the normalized ratio is as follows:

\[
\text{Normalized ratio} = \frac{\text{mutated/wild-type (sample)}}{\text{mutated/wild-type (calibrator)}}
\]

The final result is reported as percent JAK2 V617F of total JAK2 (ie, \[\frac{\text{mutated}}{\text{mutated + wild-type}} \times 100\%\]) calculated from the normalized mutated:wild-type ratio. (Instruction manual: Roche Applied Science Technical Note No. LC 13/2001. Relative Quantification; LightCycler 480, 2006)

PDF Report
No

Day(s) and Time(s) Test Performed
Monday through Friday; 12 p.m.

Analytic Time
2 days

Maximum Laboratory Time
5 days

Specimen Retention Time
DNA stored for 3 months

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
81270-JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis, p.Val617Phe (V617F) variant

LOINC® Information
### Test Definition: JAK2B

**JAK2 V617F Mutation Detection, B**

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK2B</td>
<td>JAK2 V617F Mutation Detection, B</td>
<td>43399-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>39722</td>
<td>JAK2 Result</td>
<td>53761-3</td>
</tr>
<tr>
<td>29590</td>
<td>JAK2 V617F Mutation Detection, B</td>
<td>43399-5</td>
</tr>
</tbody>
</table>