Overview

Useful For
An ancillary test for congenital adrenal hyperplasia, particularly in situations in which a diagnosis of 21-hydroxylase and 11-hydroxylase deficiency have been ruled out

Confirming a diagnosis of 3-beta-hydroxy dehydrogenase deficiency

Testing Algorithm
See Steroid Pathways in Special Instructions.

Special Instructions
- Steroid Pathways

Method Name
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

NY State Available
Yes

Specimen

Specimen Type
Serum

Specimen Required

Collection Container/Tube:
Preferred: Red top
Acceptable: Serum gel
Submission Container/Tube: Plastic vial

Specimen Volume: 1 mL

Specimen Minimum Volume
0.5 mL

Reject Due To

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>OK</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>OK</td>
</tr>
</tbody>
</table>

Specimen Stability Information
Clinical Information

Congenital adrenal hyperplasia (CAH) is caused by inherited defects in steroid biosynthesis. Deficiencies in several enzymes cause CAH including 21-hydroxylase (CYP21A2 mutations; 90% of cases), 11-hydroxylase (CYP11A1 mutations; 5%-8%), 3-beta-hydroxy dehydrogenase (HSD3B2 mutations; <5%), and 17-alpha-hydroxylase (CYP17A1 mutations; 125 cases reported to date). The resulting hormone imbalances (reduced glucocorticoids and mineralocorticoids, and elevated steroid intermediates and androgens) can lead to life-threatening, salt-wasting crises in the newborn period and incorrect gender assignment of virilized females.

The adrenal glands, ovaries, testes, and placenta produce steroid intermediates, which are hydroxylated at position 21 (by 21-hydroxylase) and position 11 (by 11-hydroxylase) to produce cortisol. Deficiency of either 21-hydroxylase or 11-hydroxylase results in decreased cortisol synthesis and loss of feedback inhibition of adrenocorticotropic hormone (ACTH) secretion. The consequent increased pituitary release of ACTH drives increased production of steroid intermediates.

The steroid intermediates are oxidized at position 3 (by 3-beta-hydroxy dehydrogenase [3-beta-HSD]). The 3-beta-HSD enzyme allows formation of 17-hydroxyprogesterone (17-OHPG) from 17-hydroxypregnenolone and progesterone from pregnenolone. When 3-beta-HSD is deficient, cortisol is decreased, 17-hydroxypregnenolone and pregnenolone levels may increase, and 17-OHPG and progesterone levels, respectively, are low. Dehydroepiandrosterone is also converted to androstenedione by 3-beta-HSD, and may be elevated in patients affected with 3-beta-HSD deficiency.

The best screening test for CAH, most often caused by either 21- or 11-hydroxylase deficiency, is the analysis of 17-hydroxyprogesterone (along with cortisol and androstenedione). CAH21 / Congenital Adrenal Hyperplasia (CAH) Profile for 21-Hydroxylase Deficiency allows the simultaneous determination of these 3 analytes. Alternately, these tests may be ordered individually: OHPG / 17-Hydroxyprogesterone, Serum; CINP / Cortisol, Serum, LC-MS/MS; and ANST / Androstenedione, Serum.

If both 21- and 11-hydroxylase deficiency have been ruled out, analysis of 17-hydroxypregnenolone and pregnenolone may be used to confirm the diagnosis of 3-beta-HSD or 17-alpha-hydroxylase deficiency.

See Steroid Pathways in Special Instructions.

Reference Values

CHILDREN*

Males

0-6 years: not established

7-9 years: <206 ng/dL

10-12 years: <152 ng/dL

13-15 years: 18-197 ng/dL
16-17 years: 17-228 ng/dL

Tanner Stages

Stage I: <157 ng/dL
Stage II: <144 ng/dL
Stage III: <215 ng/dL
Stage IV-V: 19-201 ng/dL

Females

0-6 years: not established
7-9 years: <151 ng/dL
10-12 years: 19-220 ng/dL
13-15 years: 22-210 ng/dL
16-17 years: 22-229 ng/dL

Tanner Stages

Stage I: <172 ng/dL
Stage II: 22-229 ng/dL
Stage III: 34-215 ng/dL
Stage IV-V: 26-235 ng/dL

ADULTS

> or =18 years: 33-248 ng/dL

Interpretation

Diagnosis and differential diagnosis of congenital adrenal hyperplasia (CAH) always require the measurement of several steroids. Patients with CAH due to steroid 21-hydroxylase gene (CYP21A2) mutations usually have very high levels of androstenedione, often 5-fold to 10-fold elevations. 17-Hydroxyprogesterone (17-OHPG) levels are usually even higher, while cortisol levels are low or undetectable. All 3 analytes should be tested.

For the HSD3B2 mutation, cortisol, 17-OHPG and progesterone levels will be will be decreased; 17-hydroxypregnenolone and pregnenolone and dehydroepiandrosterone levels will be increased.

In the much less common CYP11A1 mutation, androstenedione levels are elevated to a similar extent as seen in CYP21A2 mutation, and cortisol also is low, but 17-OHPG is only mildly, if at all, elevated.
In the also very rare 17-hydroxylase deficiency, androstenedione, all other androgen-precursors (17-alpha-hydroxyprogrenenolone, 17-OHPG, dehydroepiandrosterone sulfate), androgens (testosterone, estrone, estradiol), and cortisol are low, while production of mineral corticoid and its precursors (in particular pregnenolone, 11-desoxy cortisol, cortisol, and 18-hydroxycorticosterone) are increased.

See Steroid Pathways in Special Instructions.

Cautions
No significant cautionary statements

Supportive Data
To convert to nmol/L, multiply the value in ng/dL by 0.03159757.

Clinical Reference

Performance

Method Description
Deuterium-labeled internal standards (pregnenolone-d4 and 17-hydroxypregnenolone-d3) are added to 0.2 mL of sample. Pregnenolone, 17-hydroxyprogrenenolone, and the internal standards are extracted from the sample using solid-phase extraction. The extracts are then washed and dried under nitrogen. Extracts are then derivatized using hydroxylamine and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The mass spectrometer has an electrospray interface and is operated in the multiple-reaction monitoring positive mode. A 7-point standard curve is extracted and derivatized with each batch of samples.(Unpublished Mayo method)

PDF Report
No

Day(s) and Time(s) Test Performed
Monday, Tuesday, Thursday; 8 a.m.

Analytic Time
2 days
Test Definition: PREGN
Pregnenolone, S

Maximum Laboratory Time
6 days

Specimen Retention Time
14 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
84140

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREGN</td>
<td>Pregnenolone, S</td>
<td>2837-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>88645</td>
<td>Pregnenolone, S</td>
<td>2837-3</td>
</tr>
</tbody>
</table>