Overview

Useful For
Aiding in the diagnosis of iron deficiency and iron overload conditions
Differentiating iron deficiency anemia and anemia of chronic disease

Testing Algorithm
See Hereditary Hemochromatosis Algorithm in Special Instructions.

Special Instructions
- Hereditary Hemochromatosis Algorithm

Method Name
Immunoenzymatic Assay

NY State Available
Yes

Specimen

Specimen Type
Serum

Specimen Required
Container/Tube:

Preferred: Serum gel
Acceptable: Red top

Specimen Volume: 0.6 mL

Collection Instructions:
1. Serum gel tubes should be centrifuged within 2 hours of collection.
2. Red-top tubes should be centrifuged and the serum aliquoted into a plastic vial within 2 hours of collection.

Forms
If not ordering electronically, complete, print, and send a Benign Hematology Test Request Form (T755) with the specimen.

Specimen Minimum Volume
0.5 mL

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
</tbody>
</table>
Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Refrigerated (preferred)</td>
<td>7 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>90 days</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Ferritin is a large spherical protein consisting of 24 noncovalently linked subunits with a molecular weight of approximately 450,000 D. The subunits form a shell surrounding a central core containing variable amounts of ferric hydroxyphosphate. One molecule of ferritin is capable of binding between 4000 and 5000 atoms of iron, making ferritin the major iron storage protein for the body.

Ferritin is found chiefly in the cytoplasm of cells of the reticuloendothelial system and is a constituent of normal human serum. The concentration of ferritin is directly proportional to the total iron stores in the body, resulting in serum ferritin concentrations becoming a common diagnostic tool in the evaluation of iron status.

In most normal adults, serum ferritin concentrations vary with age and sex. There is a sharp rise in serum ferritin concentrations in the first month of life, coinciding with the depression of bone marrow erythropoiesis. Within 2 or 3 months, erythropoiesis becomes reactivated and there is a drop in the concentration of serum ferritin. By 6 months, the concentration is reduced to fairly low levels where they remain throughout childhood. There is no sex difference until the onset of puberty, at which time ferritin concentrations rise, particularly in males. There is a significant positive correlation between age and serum ferritin concentrations in females, but not in males.

Patients with iron deficiency anemia have serum ferritin concentration approximately one-tenth of normal subjects, while patients with iron overload (hemochromatosis, hemosiderosis) have serum ferritin concentrations much higher than normal. Studies also suggest that serum ferritin provides a sensitive means of detecting iron deficiency at an early stage. Serum ferritin concentrations may serve as a tool to monitor the effects of iron therapy, but results should be interpreted with caution, as these cases may not always reflect the true state of iron stores. Ferritin is a positive acute phase reactant in both adults and children, whereby chronic inflammation results in a disproportionate increase in ferritin in relation to iron reserves. Elevated ferritin is also observed in acute and chronic liver disease, chronic renal failure, and in some types of neoplastic disease.

Evaluating body iron stores may include serum iron determination, total iron binding capacity (TIBC), and percent saturation of transferrin, however are subject to diurnal variations and may be less precise. Additionally, they do not discriminate between depleted iron stores (iron deficiency) and conditions associated with defective iron release (eg, anemia of chronic disease).

Reference Values

Males: 24-336 mcg/L

Females: 11-307 mcg/L

Interpretation

Hypoferritinemia is associated with increased risk for developing iron deficiency where iron deficiency is sufficient to
reduce erythropoiesis causing hemoglobin concentrations to fall. Latent iron deficiency occurs when serum ferritin is low without low hemoglobin.

Hyperferritinemia is associated with iron overload conditions including hereditary hemochromatosis where concentrations may exceed 1000 mcg/L. Non-iron overload hyperferritinemia may be caused by common liver disorders, neoplasms, acute or chronic inflammation, and hereditary hyperferritinemia-cataract syndrome.

For more information about hereditary hemochromatosis testing, see Hereditary Hemochromatosis Algorithm in Special Instructions.

Cautions

Ferritin is an acute phase reactant and may be elevated in patients with inflammation, liver disease, chronic infection, autoimmune disorders, and malignancy.

Ferritin may be elevated in excess iron storage disorders besides hemochromatosis including hemolytic anemia, sideroblastic anemia, and in those with multiple blood transfusions.

Race and ethnicity factors (especially in Native Africans, African Americans, and Asians) are also associated with higher mean concentrations of serum ferritin than are typical of whites, the basis of which is incompletely understood.

Clinical Reference


Performance

Method Description

The Access Ferritin assay is a 2-site immunoenzymatic ("sandwich") assay. A sample is added to a reaction vessel with goat anti-ferritin alkaline phosphatase conjugate, and paramagnetic particles coated with goat anti-mouse: mouse anti-ferritin complexes. Serum or plasma (heparin) ferritin binds to the immobilized monoclonal anti-ferritin on the solid phase, while the goat anti-ferritin enzyme conjugate reacts with different antigenic sites on the ferritin molecules. After incubation in a reaction vessel, materials bound to the solid phase are held in a magnetic field while unbound materials are washed away. Then, the chemiluminescent substrate Lumi-Phos* 530 is added to the vessel and light generated by the reaction is measured with a luminometer. The light production is directly proportional to the concentration of ferritin in the sample. The amount of analyte in the sample is determined from a stored, multipoint calibration curve.(Package insert: DxI Reagent. Beckman Coulter Inc;11/2019)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Sunday; Continuously

Analytic Time

Same day/1 day

Maximum Laboratory Time

3 days
Specimen Retention Time
7 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test has been cleared, approved or is exempt by the U.S. Food and Drug Administration and is used per manufacturer's instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.

CPT Code Information
82728

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERR</td>
<td>Ferritin, S</td>
<td>20567-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERR</td>
<td>Ferritin, S</td>
<td>20567-4</td>
</tr>
</tbody>
</table>