Overview

Useful For
Predicting the future development of type 1 diabetes in asymptomatic children, adolescents, and young adults, when used in conjunction with family history, HLA-typing, and other autoantibodies, including GD65S/81596 Glutamic Acid Decarboxylase (GAD65) Antibody Assay, Serum and islet cell antigen 2 (IA-2) antibodies

Differential diagnosis of type 1 versus type 2 diabetes

Evaluating diabetics with insulin resistance in patients with established diabetes (type 1 or type 2)

Investigation of hypoglycemia in nondiabetic subjects

Method Name
Radioimmunoassay (RIA)

NY State Available
Yes

Specimen

Specimen Type
Serum

Specimen Required

Container/Tube:

Preferred: Red top

Acceptable: Serum gel

Specimen Volume: 1.5 mL

Specimen Minimum Volume
1 mL

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>Reject</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Refrigerated (preferred)</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>28 days</td>
<td></td>
</tr>
</tbody>
</table>
Clinical and Interpretive

Clinical Information

The onset of autoimmune diabetes mellitus (type 1 diabetes mellitus) is preceded (and accompanied) by the appearance of autoantibodies to a variety of pancreatic islet cell antigens in serum, including insulin. The level of these autoantibodies is generally low and may even fall during follow-up. In genetically predisposed, but disease-free, individuals (first degree relatives of patients with type 1 diabetes or individuals with permissive HLA alleles), detection of multiple islet cell autoantibodies is a strong predictor for subsequent development of type 1 diabetes.

Once type 1 diabetes has become fully manifest, insulin autoantibody levels usually fall to low or undetectable levels. However, after insulin therapy is initiated, autoantibody production may recur as a memory response. Insulin autoantibody production is more common when therapeutic insulin of animal origin is used (rarely used in contemporary practice). Larger therapeutic doses may be required because of antibody-induced insulin resistance.

Insulin antibodies may be found in nondiabetic individuals complaining of hypoglycemic attacks. In this setting their presence can be an indicator of "factitious hypoglycemia" due to the surreptitious injection of insulin, rather than to a clinical problem (eg, insulinoma). However, insulin autoantibodies in nondiabetic subjects can occasionally develop without exposure to exogenous insulin and may rarely become a cause of episodic hypoglycemia. Anti-idiotype autoantibodies against insulin autoantibodies have been demonstrated in some cases. Interaction of these antibodies with insulin autoantibodies could displace bound insulin from the insulin autoantibodies, resulting in hypoglycemia.

In addition to IgG and IgM insulin autoantibodies, IgE antibodies (identified by the fluorescence enzyme immunoassay) may occur. IgE insulin autoantibodies result in immediate hypersensitivity reactions, such as urticaria, but do not lead to insulin resistance or hypoglycemia as can be seen with the IgG antibodies. This test only determines the presence of IgG and IgM antibodies, not IgE antibodies.

In conjunction with family history, HLA-typing and measurement of other islet cell autoantibodies (glutamic acid decarboxylase [GAD65] antibody and islet cell antigen 2 antibody [IA-2]), insulin autoantibody testing helps predict the future development of type 1 diabetes in asymptomatic children, adolescents, and young adults. Inclusion of a recently described fourth autoantibody (zinc transporter 8, ZnT8) further enhances the prediction of type 1 diabetes occurrence and its distinction from type 2 diabetes.

Reference Values

< or =0.02 nmol/L

Reference values apply to all ages.

Interpretation

Seropositivity (> or =0.03 nmol/L) in a patient never treated with insulin is consistent with predisposition to type 1 diabetes. Seropositivity is not as informative of type 2 diabetes status as other islet cell antibodies in patients who are receiving (or have received) insulin therapy because this antibody can arise secondary to therapy. It is thought that high levels of insulin autoantibodies might contribute to insulin resistance.

A family history of type 1 diabetes, other organ-specific autoimmunity and a diabetes-permissive HLA phenotype strengthens the prediction of type 1 diabetes development. The detection of multiple islet cell antibodies is indicative
of the likely development of future type 1 diabetes.

In patients presenting with hypoglycemia, the presence of insulin autoantibodies may indicate surreptitious insulin administration or, rarely, insulin autoantibody-related hypoglycemia. The differential diagnosis cannot be made on the basis of insulin autoantibody detection alone. C-peptide and insulin measurements are always required in addition to insulin autoantibody measurements in the diagnosis of hypoglycemia.

Cautions

This test should not be requested in patients who have recently received radioisotopes, therapeutically or diagnostically, because of potential assay interference. The specific waiting period before specimen collection will depend on the isotope administered, the dose given and the clearance rate in the individual patient. Specimens will be screened for radioactivity prior to analysis. Radioactive specimens received in the laboratory will be held 1 week and assayed if sufficiently decayed, or canceled if radioactivity remains.

Clinical Reference

Performance

Method Description

(125)I-labeled recombinant human insulin is added to the test serum; if antibody is present, it forms a soluble complex with the labeled insulin. Subsequent addition of goat antihuman IgG and IgM precipitates the complex. The amount of radioactivity in the precipitate is proportional to the level of antibody in the serum.(Unpublished Mayo method)

PDF Report

No

Day(s) and Time(s) Test Performed

Sunday, Wednesday; 10 p.m.

Analytic Time

3 days/negative 5 days/positive

Maximum Laboratory Time

9 days

Specimen Retention Time

28 days

Performing Laboratory Location

Rochester

Fees and Codes
Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
86337

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INAB</td>
<td>Insulin Abs, S</td>
<td>60463-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8666</td>
<td>Insulin Abs, S</td>
<td>60463-7</td>
</tr>
</tbody>
</table>