Overview

Useful For
Aids in the diagnosis of congestive heart failure

Testing Algorithm
See Laboratory Approach to the Diagnosis of Amyloidosis in Special Instructions.

Special Instructions
- Laboratory Approach to the Diagnosis of Amyloidosis

Method Name
Electrochemiluminescence Immunoassay

NY State Available
Yes

Specimen

Specimen Type
Serum

Necessary Information
Patient's age and sex are required.

Specimen Required

Patient Preparation: For 12 hours before this test do not take multivitamins or dietary supplements containing biotin (vitamin B7), which is commonly found in hair, skin, and nail supplements and multivitamins.

Collection Container/Tube:

Preferred: Serum gel
Acceptable: Red top

Submission Container/Tube: Plastic vial

Specimen Volume: 0.5 mL

Collection Instructions:

1. Serum gel tubes should be centrifuged within 2 hours of collection.
2. Red-top tubes should be centrifuged and aliquoted within 2 hours of collection.

Forms
If not ordering electronically, complete, print, and send a Cardiovascular Test Request Form (T724) with the specimen.
Clinical and Interpretive

Clinical Information

B-type natriuretic peptide (brain natriuretic peptide: BNP) is a small, ringed peptide secreted by the heart to regulate blood pressure and fluid balance.\(^1\) This peptide is stored in and secreted predominantly from membrane granules in the heart ventricles in a pro form (proBNP). Once released from the heart in response to ventricle volume expansion or pressure overload, the N-terminal (NT) piece of 76 amino acids (NT-proBNP) is rapidly cleaved by the enzymes corin and furin to release the active 32-amino acid peptide (BNP).\(^2\)

Both BNP and NT-proBNP are markers of atrial and ventricular distension due to increased intracardiac pressure. The New York Heart Association (NYHA) developed a 4-stage functional classification system for congestive heart failure (CHF) based on the severity of the symptoms. Studies have demonstrated that the measured concentrations of circulating BNP and NT-proBNP increase with the severity of CHF based on the NYHA classification.

Reference Values

Males

- \(<\text{or}=45\text{ years}: 10-51\text{ pg/mL}\n- 46\text{ years}: 10-53\text{ pg/mL}\n- 47\text{ years}: 10-55\text{ pg/mL}\n- 48\text{ years}: 10-56\text{ pg/mL}\n- 49\text{ years}: 10-58\text{ pg/mL}\n- 50\text{ years}: 10-59\text{ pg/mL}\n- 51\text{ years}: 10-61\text{ pg/mL}\n- 52\text{ years}: 10-62\text{ pg/mL}\n- 53\text{ years}: 10-64\text{ pg/mL}\
<table>
<thead>
<tr>
<th>Age</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 years</td>
<td>10-67 pg/mL</td>
</tr>
<tr>
<td>55 years</td>
<td>10-68 pg/mL</td>
</tr>
<tr>
<td>56 years</td>
<td>10-70 pg/mL</td>
</tr>
<tr>
<td>57 years</td>
<td>10-71 pg/mL</td>
</tr>
<tr>
<td>58 years</td>
<td>10-73 pg/mL</td>
</tr>
<tr>
<td>59 years</td>
<td>10-76 pg/mL</td>
</tr>
<tr>
<td>60 years</td>
<td>10-77 pg/mL</td>
</tr>
<tr>
<td>61 years</td>
<td>10-79 pg/mL</td>
</tr>
<tr>
<td>62 years</td>
<td>10-82 pg/mL</td>
</tr>
<tr>
<td>63 years</td>
<td>10-83 pg/mL</td>
</tr>
<tr>
<td>64 years</td>
<td>10-85 pg/mL</td>
</tr>
<tr>
<td>65 years</td>
<td>10-88 pg/mL</td>
</tr>
<tr>
<td>66 years</td>
<td>10-89 pg/mL</td>
</tr>
<tr>
<td>67 years</td>
<td>10-92 pg/mL</td>
</tr>
<tr>
<td>68 years</td>
<td>10-95 pg/mL</td>
</tr>
<tr>
<td>69 years</td>
<td>10-97 pg/mL</td>
</tr>
<tr>
<td>70 years</td>
<td>10-100 pg/mL</td>
</tr>
<tr>
<td>71 years</td>
<td>10-103 pg/mL</td>
</tr>
<tr>
<td>72 years</td>
<td>10-104 pg/mL</td>
</tr>
<tr>
<td>73 years</td>
<td>10-107 pg/mL</td>
</tr>
<tr>
<td>74 years</td>
<td>10-110 pg/mL</td>
</tr>
<tr>
<td>75 years</td>
<td>10-113 pg/mL</td>
</tr>
<tr>
<td>76 years</td>
<td>10-116 pg/mL</td>
</tr>
<tr>
<td>77 years</td>
<td>10-119 pg/mL</td>
</tr>
<tr>
<td>78 years</td>
<td>10-122 pg/mL</td>
</tr>
<tr>
<td>79 years</td>
<td>10-125 pg/mL</td>
</tr>
</tbody>
</table>
80 years: 10-128 pg/mL
81 years: 10-131 pg/mL
82 years: 10-135 pg/mL
> or =83 years: 10-138 pg/mL

Females
< or =46 years: 10-140 pg/mL
47 years: 10-141 pg/mL
48 years: 10-144 pg/mL
49 years: 10-146 pg/mL
50 years: 10-149 pg/mL
51 years: 10-150 pg/mL
52 years: 10-152 pg/mL
53 years: 10-155 pg/mL
54 years: 10-157 pg/mL
55 years: 10-160 pg/mL
56 years: 10-162 pg/mL
57 years: 10-166 pg/mL
58 years: 10-168 pg/mL
59 years: 10-171 pg/mL
60 years: 10-173 pg/mL
61 years: 10-177 pg/mL
62 years: 10-179 pg/mL
63 years: 10-183 pg/mL
64 years: 10-185 pg/mL
65 years: 10-189 pg/mL
66 years: 10-193 pg/mL
Interpretation

Under 50 years of age:

N-terminal pro brain natriuretic peptide (NT-proBNP) values below 300 pg/mL have a 99% negative predictive value for excluding acute congestive heart failure (CHF). A cutoff of 1,200 pg/mL for patients with an estimated glomerular filtration rate (eGFR) below 60 yields a diagnostic sensitivity and specificity of 89% and 72% for acute CHF. NT-proBNP values greater than 450 pg/mL are consistent with CHF in adults under 50 years of age.

50-75 years of age:

NT-proBNP values below 300 pg/mL have a 99% negative predictive value for excluding acute CHF. A cutoff of 1,200 pg/mL, for patients with an eGFR below 60 yields a diagnostic sensitivity and specificity of 89% and 72% for acute CHF. A diagnostic NT-proBNP cutoff of 900 pg/mL has been suggested in adults 50 to 75 years of age in the absence of renal failure.

Over 75 years of age:
NT-proBNP values below 300 pg/mL have a 99% negative predictive value for excluding acute CHF. A cutoff of 1,200 pg/mL for patients with an eGFR below 60 yields a diagnostic sensitivity and specificity of 89% and 72% for acute CHF. A diagnostic NT-proBNP cutoff of 1,800 pg/mL has been suggested in adults over 75 years of age in the absence of renal failure.

NT-Pro BNP levels are loosely correlated with New York Heart Association (NYHA) functional class (see Table).

Interpretive Levels for CHF

<table>
<thead>
<tr>
<th>Functional Class</th>
<th>5th to 95th Percentile</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>31-1,110 pg/mL</td>
<td>377 pg/mL</td>
</tr>
<tr>
<td>II</td>
<td>55-4,975 pg/mL</td>
<td>1,223 pg/mL</td>
</tr>
<tr>
<td>III</td>
<td>77-26,916 pg/mL</td>
<td>3,130 pg/mL</td>
</tr>
<tr>
<td>IV</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*In a Mayo Clinic study of 75 patients with CHF, only 4 were characterized as Class IV. Accordingly, range and median are not provided.

Cautions

Lack of N-terminal-pro brain natriuretic peptide (NT-proBNP) elevations have been reported if congestive heart failure is very acute (first hour) or occurs with ventricular inflow obstruction (hypertrophic obstructive cardiomyopathy, mitral stenosis, atrial myxoma).

Supportive Data

The Roche NT-proBNP assay is automated and more precise than the Biosite BNP assay used previously. In addition, in vitro NT-proBNP is more stable than BNP.

Clinical Reference

3. DeFilippi C, van Kimmenade R, Pinto YM: Amino-terminal pro-B-type natriuretic peptide testing in renal disease. Am J Cardiol 2008;101[suppl]:82A- 88A

Performance

Method Description

This is an automated, double-incubation sandwich assay. In the first incubation, antigen from the patient specimen reacts with biotinylated monoclonal sheep N-terminal pro brain natriuretic peptide (NT-proBNP) antibody and monoclonal NT-proBNP antibody labeled with ruthenium complex. During the second incubation, streptavidin-labeled microparticles are added, and the resulting complex is bound to the solid-phase via biotin-streptavidin interaction. The resulting reaction mixture is aspirated into the measuring cell where the microparticles are magnetically captured onto the surface of an electrode. Unbound substances are washed away. Voltage is then applied to the electrode,
which induces chemiluminescent emission that is measured by a photomultiplier. Results are obtained by comparing this measurement against the calibration curve. The Roche E Modular NT-proBNP assay standardization is traceable to an internal Roche standard. Assigned values for calibrators are traceable to this standardization.

The Roche N-terminal pro brain natriuretic peptide (NT-proBNP) assay is automated and more precise than the Biosite BNP assay used previously. In addition, in vitro NT-proBNP is more stable than BNP. (Package insert: ProBNP II, Roche Diagnostics Corporation, Indianapolis IN)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Sunday; Continuously

Analytic Time

Same day/1 day

Maximum Laboratory Time

1 day

Specimen Retention Time

6 days

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to [Test Prices](#) for detailed fee information.
- Clients without access to Test Prices can contact [Customer Service](#) 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact [Customer Service](#).

Test Classification

This test has been cleared or approved by the U.S. Food and Drug Administration and is used per manufacturer's instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.

CPT Code Information

83880

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBNP</td>
<td>NT-Pro BNP, S</td>
<td>83107-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBNP</td>
<td>NT-Pro BNP, S</td>
<td>83107-3</td>
</tr>
</tbody>
</table>