Overview

Useful For
Diagnosis of adult individuals suspected of having transthyretin-associated familial amyloidosis

Genetics Test Information
Mass spectrometry to evaluate transthyretin (TTR) protein structure is performed first. In all cases demonstrating a structural change, the TTR gene will be further analyzed by DNA sequence analysis. If no alterations are detected, the reflex full gene analysis will not be performed unless a specific request for ATTRZ / TTR Gene, Full Gene Analysis is submitted by the ordering physician or client.

Reflex Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRZ</td>
<td>TTR Gene, Full Gene Analysis</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Testing Algorithm
If familial amyloidosis by liquid chromatography-mass spectrometry is abnormal, DNA sequence will be performed and charged separately.

See Amyloidosis (Familial) Test Algorithm in Special Instructions.

Special Instructions
- Amyloidosis (Familial) Test Algorithm

Method Name
Liquid Chromatography-Mass Spectrometry (LC-MS)

NY State Available
Yes

Specimen

Specimen Type
Whole blood

Shipping Instructions
Specimen must arrive within 96 hours of draw.

Specimen Required
Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: ACD
Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.
2. Send specimen in original tube.

Forms

1. If not ordering electronically, complete, print, and send 1 of the following forms with the specimen:
 - Neurology Specialty Testing Client Test Request (T732)
 - Hematopathology/Cytogenetics Test Request (T726)

Specimen Minimum Volume

0.5 mL

Reject Due To

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>OK</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>OK</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>Refrigerated (preferred)</td>
<td>4 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>4 days</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

The amyloidoses are a group of diseases that result from the abnormal deposition of amyloid in various tissues of the body. They have been classified into 3 major types: primary, secondary, and hereditary. The most common form of amyloidosis (AL) is a disease of the bone marrow called primary systemic AL (immunoglobulin light chain). Secondary AL usually occurs in tandem with chronic infectious or inflammatory diseases, such as rheumatoid arthritis, tuberculosis, or osteomyelitis. Familial or hereditary AL is the least common form. Determining the specific type of AL is imperative in order to provide both an accurate prognosis and appropriate therapies.

Familial or hereditary transthyretin AL is an autosomal dominant disorder caused by mutations in the transthyretin gene (TTR). The resulting amino acid substitutions lead to a relatively unstable, amyloidogenic transthyretin (TTR) protein. Most individuals begin to exhibit clinical symptoms between the third and seventh decades of life. Affected individuals may present with a variety of symptoms including sensorimotor and autonomic neuropathy, vitreous opacities, cardiomyopathy, nephropathy, and gastrointestinal dysfunction. TTR-associated AL is progressive over a course of 5 to 15 years and usually ends in death from cardiac or renal failure or malnutrition. Orthotopic liver transplantation is a treatment option for some patients who are diagnosed in early stages of the disease.
Mayo Clinic Laboratories recommends a testing strategy that includes both protein analysis by mass spectrometry (MS) and TTR gene analysis by DNA sequencing for patients in whom TTR-associated familial AL is suspected. The structure of TTR protein in plasma is first determined by MS. The presence of a pathogenic variant in the TTR gene leads to conformational changes in the TTR protein. This ultimately disrupts the stability of the mature TTR protein tetramer, leading to increased amounts of pro-amyloidogenic TTR monomers in the plasma of affected individuals. MS is able to identify mass difference between wild type TTR and variant TTR protein. Only the transthyretin (also known as prealbumin) is analyzed for amino acid substitutions. Other proteins involved in other less common forms of familial amyloidosis are not examined. If no alterations are detected, gene analysis will not be performed unless requested by the provider (ie, when the diagnosis is still strongly suspected; to rule out the possibility of a false-negative by MS). In all cases demonstrating a structural change by MS, the entire TTR gene will be analyzed by DNA sequence analysis to identify and characterize the observed alteration (gene mutation or benign polymorphism). More than 90 mutations that cause TTR-associated familial AL have now been identified within the TTR gene. Most of the mutations described to date are single base pair changes that result in an amino acid substitution. Some of these mutations correlate with the clinical presentation of AL.

For predictive testing in cases where a familial mutation is known, testing for the specific mutation by DNA sequence analysis (FMTT / Familial Mutation, Targeted Testing) is recommended. These assays do not detect mutations associated with non-TTR forms of familial AL. Therefore, it is important to first test an affected family member to determine if TTR is involved and to document a specific mutation in the family before testing at risk individuals.

Reference Values

An interpretive report will be provided.

Interpretation

The presence of a structural change in transthyretin (TTR) is suggestive of a gene mutation that requires confirmation by DNA sequence analysis. A negative result by mass spectrometry does not rule out a TTR mutation. Mass spectrometric (MS) results are falsely negative if the amino acid substitution does not produce a measurable mass shift for the transthyretin mutation. Approximately 90% of the TTR mutations are positive by MS (see Cautions).

After identification of the mutation at the DNA level, predictive testing for at-risk family members can be performed by molecular analysis (FMTT / Familial Mutation, Targeted Testing).

Cautions

There are 3 circumstances where testing by mass spectrometry will not identify amyloid-causing mutations:

- If the amino acid change results in a protein different by less than 10 atomic mass units (amu), the mutation will not be reliably detected.

- If an amino acid change results from a frequent nondisease-causing mutation (+30 amu). Since over 12% of the population has this innocuous polymorphism, it is an instance in which molecular testing must be done.

- Coinheritance of the polymorphism with a -30 amu mutation would result in a transthyretin mass indistinguishable from normal.

Clinical Reference

Test Definition: TTRX
Familial Amyloidosis Reflex

15;74(4):741-751

Performance

Method Description
Familial Amyloidosis, Mass Spectrometry (MS):

Transthyretin (TTR) is purified from plasma using affinity chromatography. The chromatography is done using an anti-human-TTR antibody that has been coupled to POROS-aldehyde media. Plasma is reduced to simplify the mass spectra by removing Cys10 adducted species. The solution is then injected onto the affinity column, which sequesters TTR. TTR is then eluted from the affinity column and concentrated on a C4 column, which is then washed to remove excess components that suppress MS response. TTR is then eluted from the C4 column and introduced to the MS. The acquired ion spectra are deconvoluted and reviewed for TTR variants. After deconvolution, normal patients present with a single peak corresponding to wild-type (wt) TTR, which serves as a reference. When positive, amyloid patients are typically heterozygous and are detected by the presence of 2 peaks (ie, wt TTR and mutant TTR) differing in mass.(Bergen HR 3rd, Zeldenrust SR, Butz ML, et al: Identification of transthyretin variants by sequential proteomic and genomic analysis. Clin Chem 2004 Sep;50[9]:1544-1552)

TTR Gene, Full Gene Analysis:

PDF Report
No

Day(s) Performed
Tuesday

Report Available
7 to 14 days

Specimen Retention Time
2 months

Performing Laboratory Location
Rochester
Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
82542 LC-MS
81404 TTR gene (if appropriate)

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTRX</td>
<td>Familial Amyloidosis Reflex</td>
<td>94864-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>22668</td>
<td>Wild Type Mass</td>
<td>94860-4</td>
</tr>
<tr>
<td>22669</td>
<td>Wild Type Width at Half Height</td>
<td>94863-8</td>
</tr>
<tr>
<td>22670</td>
<td>Second Mass</td>
<td>94862-0</td>
</tr>
<tr>
<td>22671</td>
<td>Mass Difference</td>
<td>94861-2</td>
</tr>
<tr>
<td>22673</td>
<td>Abnormal result</td>
<td>51968-6</td>
</tr>
<tr>
<td>50944</td>
<td>Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>50946</td>
<td>Reviewed By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>