Overview

Useful For
Diagnosis of galactose-1-phosphate uridylyltransferase deficiency, the most common cause of galactosemia

Confirmation of abnormal state newborn screening results

Genetics Test Information
Galactose-1-phosphate uridylyltransferase (GALT) deficiency is the most common cause of galactosemia and requires lifelong restriction of dietary galactose.

Classic galactosemia can be diagnosed by analysis of GALT enzyme.

This test provides enzymatic testing for the diagnosis of galactose-1-phosphate uridylyltransferase (GALT) deficiency.

Testing Algorithm
See Galactosemia Testing Algorithm in Special Instructions.

Special Instructions
- Informed Consent for Genetic Testing
- Galactosemia Testing Algorithm
- Biochemical Genetics Patient Information
- Informed Consent for Genetic Testing (Spanish)
- Galactosemia-Related Test List

Method Name
Enzyme Reaction followed by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

NY State Available
Yes

Specimen

Specimen Type
Whole Blood EDTA

Advisory Information
This test is for galactose-1-phosphate uridylyltransferase (GALT) enzyme testing only. The preferred test to evaluate for possible diagnosis of galactosemia, routine carrier screening, and followup of abnormal newborn screening results is GCT / Galactosemia Reflex, Blood.

This assay will not detect galactokinase (GALK) deficiency or uridine diphosphate-galactose 4’ epimerase (GALE) deficiency.

- To evaluate for GALK deficiency, order GALK / Galactokinase, Blood.
- To evaluate for GALE deficiency, order GALE / UDP-Galactose 4’ Epimerase, Blood.

This assay is not appropriate for monitoring dietary compliance. If dietary monitoring is needed, order GAL1P /
Galactose-1-Phosphate, Erythrocytes.

**Necessary Information**

Patient’s age is required.

*Biochemical Genetics Patient Information* (T602) is recommended, but not required, to be filled out and sent with the specimen to aid in the interpretation of test results.

**Specimen Required**

Multiple whole blood tests for galactosemia can be performed on 1 specimen. Prioritize order of testing when submitting specimens. See *Galactosemia-Related Test List* in Special Instructions for a list of tests that can be ordered together.

**Container/Tube:**

- **Preferred:** Lavender top (EDTA)
- **Acceptable:** Green top (sodium heparin) or yellow top (ACD)

**Specimen Volume:** 5 mL

**Forms**

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:

   - *Informed Consent for Genetic Testing* (T576)
   - *Informed Consent for Genetic Testing-Spanish* (T826)

2. **Biochemical Genetics Patient Information** (T602) is recommended, see Special Instructions.

3. If not ordering electronically, complete, print, and send an *Inborn Errors of Metabolism Test Request* (T798) with the specimen.

**Specimen Minimum Volume**

2 mL

**Reject Due To**

<table>
<thead>
<tr>
<th>Gross hemolysis</th>
<th>Reject</th>
</tr>
</thead>
</table>

**Specimen Stability Information**

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood EDTA</td>
<td>Refrigerated (preferred)</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>14 days</td>
<td></td>
</tr>
</tbody>
</table>
Clinical and Interpretive

Clinical Information

Galactosemia is an autosomal recessive disorder that results from a deficiency of any 1 of the 3 enzymes catalyzing the conversion of galactose to glucose: galactose-1-phosphate uridylyltransferase (GALT), galactokinase (GALK), and uridine diphosphate galactose-4-epimerase (GALE). GALT deficiency is the most common cause of galactosemia and is often referred to as classic galactosemia. The complete or near-complete deficiency of GALT enzyme is life threatening if left untreated. Complications in the neonatal period include failure to thrive, liver failure, sepsis, and death.

Galactosemia is treated by a galactose-restricted diet, which allows for rapid recovery from the acute symptoms and a generally good prognosis. Despite adequate treatment from an early age, individuals with galactosemia remain at increased risk for developmental delays, speech problems, and abnormalities of motor function. Females with galactosemia are at increased risk for premature ovarian failure. Based upon reports by newborn screening programs, the frequency of classic galactosemia in the United States is approximately 1 in 30,000, although literature reports range from 1 in 10,000 to 1 in 60,000 live births.

Galactose-1-phosphate (Gal-1-P) accumulates in the erythrocytes of patients with galactosemia. The quantitative measurement of Gal-1-P (GAL1P / Galactose-1-Phosphate [Gal-1-P], Erythrocytes) is useful for monitoring compliance with dietary therapy. Gal-1-P is thought to be the causative factor for development of liver disease in these patients and, because of this, patients should maintain low levels and be monitored on a regular basis.

Duarte-variant galactosemia (compound heterozygosity for the Duarte variant, N314D and a classic variant) is generally associated with higher levels of enzyme activity (5%-20%) than classic galactosemia (<5%); however, this may be indistinguishable by newborn screening assays. Previously, it was unknown whether children with Duarte-variant galactosemia were at an increased risk for adverse developmental outcomes due to milk exposure and were often treated with a low galactose diet during infancy. More recently, the outcomes data suggest a lack of evidence for developmental complications due to milk exposure, therefore treatment recommendations remain controversial. The Los Angeles variant, which consists of N314D and a second variant, L218L, is associated with higher levels of GALT enzyme activity than the Duarte-variant allele.

Newborn screening for galactosemia is performed in all 50 US states, though the method by which potentially affected individuals are detected varies from state to state and may include the measurement of total galactose (galactose and Gal-1-P) and/or determining the activity of the GALT enzyme. The diagnosis of galactosemia is established by follow-up quantitative measurement of GALT enzyme activity. If enzyme levels are indicative of carrier or affected status, molecular testing for common GALT variants may be performed. If 1 or both disease-causing variants are not detected by targeted variant analysis and biochemical testing has confirmed the diagnosis of galactosemia, sequencing of the GALT gene is available to identify private variations.

See Galactosemia Testing Algorithm in Special Instructions for additional information.

Reference Values

> or =24.5 nmol/h/mg of hemoglobin

Interpretation

An interpretive report will be provided.

See Galactosemia Testing Algorithm in Special Instructions for additional information.

Cautions
The results of testing performed in erythrocytes, including analysis of enzymes, biochemical phenotyping, or galactose-1-phosphate are invalid following a transfusion.

**Clinical Reference**


**Performance**

**Method Description**

An aqueous mixture containing CLR H2O, uridine diphosphate (UDP)-glucose, (13)C2-labeled galactose-1-phosphate, and UDP-n-acetylglucosamine (internal standard) is added to a hemolysate aliquot. The mixture is then vortexed briefly and incubated at 37 degrees C for 15 minutes.

After incubation the reaction is quenched, extracted, and centrifuged The top layer is then transferred to a 96-well (Nunc, polypropylene) plate. Then injected onto a liquid chromatography-tandem mass spectrometry (LC-MS/MS) The ratio of the extracted peak area of (13)C2labeled UDP-galactose to its internal standard UDP-n-acyethylglucosamine as determined by LC-MS/MS is used to calculate the concentration of product analyte in the sample. The concentration of the product is then normalized using the calculated hemoglobin concentration to determine the patient's enzyme level in nmol/h/mg of hemoglobin.(Unpublished Mayo method)

**PDF Report**

No

**Day(s) and Time(s) Test Performed**

Monday, Wednesday, Friday; 7 a.m. (specimen must be received the day prior)

**Analytic Time**

4 days (not reported on Saturday or Sunday)

**Maximum Laboratory Time**

5 days

**Specimen Retention Time**

Processed RBC: 2 months

**Performing Laboratory Location**

Rochester

**Fees and Codes**

Fees
Test Definition: GALT
Gal-1-P Uridyltransferase, RBC

- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
82775

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALT</td>
<td>Gal-1-P Uridyltransferase, RBC</td>
<td>24082-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8333</td>
<td>Gal-1-P Uridyltransferase, RBC</td>
<td>24082-0</td>
</tr>
<tr>
<td>2296</td>
<td>Interpretation (GALT)</td>
<td>59462-2</td>
</tr>
<tr>
<td>58115</td>
<td>Reviewed By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>