Overview

Useful For
Distinguishing large deletional hereditary persistence of fetal hemoglobin from other conditions with increased percentage of fetal hemoglobin

Determining the distribution of Hb F within red blood cells

Special Instructions
- Thalassemia/Hemoglobinopathy Patient Information

Method Name
Only orderable as a reflex. For more information see:

-HAEVP / Hemolytic Anemia Evaluation
-HBELC / Hemoglobin Electrophoresis Cascade, Blood
-MEVP / Methemoglobinemia Evaluation
-REVE / Erythrocytosis Evaluation
-THEVP / Thalassemia and Hemoglobinopathy Evaluation

Flow Cytometry

NY State Available
Yes

Specimen

Specimen Type
Whole Blood EDTA

Specimen Required
Only orderable as a reflex. For more information see:

-HAEVP / Hemolytic Anemia Evaluation
-HBELC / Hemoglobin Electrophoresis Cascade, Blood
-MEVP / Methemoglobinemia Evaluation
-REVE / Erythrocytosis Evaluation
-THEVP / Thalassemia and Hemoglobinopathy Evaluation

Specimen Minimum Volume
0.5 mL
Test Definition: HPFH
Hemoglobin F, Red Cell Distrib, B

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood EDTA</td>
<td>Refrigerated</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

More than 75% of the hemoglobin of the newborn is hemoglobin F (Hb F); it diminishes over a period of several months to adult levels, reducing to less than 2% by age 1 and less than 1% by age 2.

Hb F may constitute 90% of the total hemoglobin in patients with beta-thalassemia major or other combinations of beta thalassemia and fetal hemoglobin (HPFH) mutations.

Hb F is often mildly to moderately elevated in sickle cell disease, aplastic anemia, acute leukemia, and myeloproliferative disorders such as juvenile myelomonocytic leukemia (JMML), hereditary spherocytosis, and alpha-thalassemia minor. It is commonly increased in hemoglobinopathies associated with hemolysis. Hb F increases to as high as 10% during normal pregnancy. Hb F is also increased due to medications such as hydroxyurea, decitabine, and lenalidomide. Elevation in Hb F has been cited as a discriminator between Diamond-Blackfan congenital pure red cell aplasia (elevated) and transient erythroblastopenia of childhood (normal), but whether this simply reflects the chronicity of anemia inherent to the former condition rather than a specific finding is unclear.

In the common (large deletional) form of the genetic trait hereditary persistence of HPFH, all of the erythrocytes contain Hb F. When tested by flow cytometry using specificity for Hb F, these HPFH cases display a homocellular distribution pattern of Hb F within the red cell population. Other causes of increased Hb F including delta beta thalassemia, hydroxyurea, and some nondeletional HPFH mutations typically display a heterocellular distribution of Hb F within the red cells, reflecting disparate populations of F cells and cells lacking Hb F. Quantification of Hb F percentage should be determined prior to flow cytometry of Hb F red cell distribution to establish the appropriateness of this test. The flow cytometry analysis of elevated Hb F levels is useful when Hb F percentage is between 15% to 35% and the clinical differential diagnosis includes large deletional HPFH. Hb F percentages below 15% are likely not due to large deletional HPFH and causes of Hb F percentages above 35% are better confirmed by molecular and family studies.

Reference Values

Only orderable as a reflex. For more information see:

- HAEVP / Hemolytic Anemia Evaluation
- HBELC / Hemoglobin Electrophoresis Cascade, Blood
- MEVP / Methemoglobinemia Evaluation
Test Definition: HPFH

Hemoglobin F, Red Cell Distrib, B

-REVE / Erythrocytosis Evaluation
-THEVP / Thalassemia and Hemoglobinopathy Evaluation

Reported as heterocellular or homocellular

Interpretation

Homocellular distribution of fetal hemoglobin is found in large deletional hereditary persistence of fetal hemoglobin.

Heterocellular distribution is found in delta beta thalassemia, medication induced, and other causes of increased hemoglobin F.

Cautions

This test is for hereditary persistence of fetal hemoglobin only. This test should **not** be ordered for fetal-maternal bleed (see FMB / Fetomaternal Bleed, Flow Cytometry, Blood).

When hemoglobin F values are above 35%, most specimens show a homocellular pattern; this does not necessarily indicate hereditary persistence of fetal hemoglobin. Clinical correlation is needed.

Clinical Reference

Performance

Method Description

This assay uses a flow cytometric method with a monoclonal antibody to hemoglobin F (Hb F). Specimens are analyzed by single-color flow cytometry using fluorescein anti-Hb F. In normal adults, a single peak is seen with minimal fluorescence, which corresponds to Hb A. In neonates, a single peak with bright fluorescence is seen, which corresponds to Hb F. In cases of hereditary persistence of fetal hemoglobin only, a single peak is observed, which has a fluorescence intensity intermediate between the normal Hb A and Hb F peaks. This pattern corresponds to the homocellular (pancellular) pattern obtained by the Kleihauer-Betke (K-B) method. In contrast, specimens from infants, transfused neonates, and cases of beta-thalassemia or delta/beta-thalassemia show both Hb A and Hb F peaks, corresponding to the heterocellular pattern of the K-B method. In patients with Hb S/hereditary persistence of fetal hemoglobin, a single peak was observed in contrast to patients with homozygous S in which 2 peaks were observed. (Hoyer JD, Penz CS, Fairbanks VF, Katzmann JA: A flow cytometric method for measurement of Hb F in red cells: applications in the evaluation of hereditary persistence of fetal hemoglobin [HPFH] and other conditions with elevated Hb F levels. Blood 1998;92:40b)
PDF Report
No

Day(s) and Time(s) Test Performed
Monday through Saturday; Continuously (Reported Monday through Friday)

Analytic Time
2 days (Not reported on Saturday or Sunday)

Maximum Laboratory Time
5 days

Specimen Retention Time
1 week

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test has been modified from the manufacturer’s instructions. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
88184

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPFH</td>
<td>Hemoglobin F, Red Cell Distrib, B</td>
<td>4579-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8270</td>
<td>Hemoglobin F, Red Cell Distrib, B</td>
<td>4579-9</td>
</tr>
<tr>
<td>2104</td>
<td>Interpretation</td>
<td>59466-3</td>
</tr>
</tbody>
</table>