Overview

Useful For
Confirmation of a clinical diagnosis of Ehlers-Danlos Syndrome (EDS)
Differentiating between the different subtypes of EDS for diagnosis and management purposes
Ascertaining carrier status of family members of individuals diagnosed with EDS for genetic counseling purposes

Genetics Test Information
This test includes next generation sequencing with deletion/duplication (copy number variation) analysis and supplemental Sanger sequencing to evaluate for variants in the ADAMTS2, ATP7A, CHST14, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, FKBP14, FLNA, PLOD1, and SLC39A13 genes.

Identification of a pathogenic variant may assist with prognosis, clinical management, familial screening, and genetic counseling.

Special Instructions
- Informed Consent for Genetic Testing
- Marfan and Related Disorders Patient Information
- Informed Consent for Genetic Testing (Spanish)

Method Name
Custom Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Supplemental Sanger Sequencing or qPCR if needed

NY State Available
Yes

Specimen

Specimen Type
Varies

Advisory Information
Targeted testing for familial variants (also called site-specific or known mutation testing) is available for the genes on this panel. See:

- KVAR1 / Known Variant Analysis-1 Variant, Varies
- KVAR2 / Known Variant Analysis-2 Variants, Varies
- KVAR3 / Known Variant Analysis-3+ Variants, Varies

Call 800-533-1710 to confirm the appropriate test for targeted testing.

Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
 Necessary Information

1. Marfan and Related Disorders Patient Information (T636) is required, see Special Instructions. Testing may proceed without the patient information however it aids in providing a more thorough interpretation. Ordering providers are strongly encouraged to complete the form and send it with the specimen.

2. Include physician name and phone number with specimen.

Specimen Required
Submit only 1 of the following specimens:

Specimen Type: Whole blood

Container/Tube: Lavender top (EDTA)

Specimen Volume: 3 mL

Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 14 days

Specimen Type: DNA

Container/Tube: 2 mL screw top tube

Specimen Volume: 100 mcL (microliters)

Collection Instructions:
1. The preferred volume is 100 mcL at a concentration of 250 ng/mcL.
2. Include concentration and volume on tube.

Specimen Stability Information: Frozen (preferred)/Ambient/Refrigerated

Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:

- Informed Consent for Genetic Testing (T576)
- Informed Consent for Genetic Testing (Spanish) (T826)

Specimen Minimum Volume
Whole blood: 1 mL

Reject Due To
Test Definition: EDSGP
Ehlers-Danlos Syndrome Gene Panel

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

The Ehlers Danlos syndromes (EDS) are a clinically and genetically diverse group of heritable connective tissue disorders. An EDS classification system proposed by the International EDS Consortium identifies 13 subtypes of EDS, with an overall estimated prevalence of EDS between 1:5,000 and 1:25,000. Over 90% of cases are either classic or hypermobile EDS (cEDS or hEDS), while less than 5% of cases are vascular EDS (vEDS). Other, rarer, subtypes of EDS also exist and are listed in the table below.

The clinical hallmarks of EDS are joint hypermobility, skin hyperextensibility, and tissue fragility. However, a variety of skin, ligament, joint, and cardiovascular features are seen across the spectrum of EDS. A clinical diagnosis of a specific subtype of EDS may be suspected based on a combination of major (a symptom present in the majority of affected individuals) and minor (a symptom of lesser diagnostic specificity that supports the diagnosis) clinical criteria. However, due to the clinical overlap between EDS subtypes and other heritable connective tissue disorders (eg, Marfan syndrome and Loeys-Dietz syndrome), a definitive diagnosis of all EDS subtypes (except EDS hypermobility type) relies on the identification of a causative variant in the appropriate gene.

Genetic variants in collagen-encoding or collagen-modifying genes have been identified as the cause of EDS in the majority of subtypes. These variants result in defects in collagen structure, processing, folding and cross-linking. One notable exception to this is hypermobile EDS (hEDS). Hypermobile EDS is inherited in an autosomal dominant inheritance pattern, similar to cEDS and vEDS, however, the molecular basis of this condition is unknown and a diagnosis is based on clinical criteria.

This panel also tests for variants in the ATP7A and FLNA genes, which result in X-linked conditions. Some patients with these conditions have clinical overlap with EDS.

Table 1. Genes included in the EDS Gene Panel

<table>
<thead>
<tr>
<th>GENE SYMBOL (ALIAS)</th>
<th>PROTEIN</th>
<th>INHERITANCE*</th>
<th>EDS CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMTS2</td>
<td>Procollagen I N-proteinase (NPI)</td>
<td>AR</td>
<td>Dermatosparaxis EDS (dEDS) / human dermatosparaxis EDS VIIC</td>
</tr>
<tr>
<td>ATP7A</td>
<td>Copper-transporting ATPase 1</td>
<td>XL</td>
<td>Occipital horn syndrome</td>
</tr>
<tr>
<td>CHST14</td>
<td>Dermatan-4-sulfotransferase-1 (D4ST1)</td>
<td>AR</td>
<td>Musculocontractural EDS (mcEDS-CHST14)</td>
</tr>
</tbody>
</table>
Test Definition: EDSGP

Ehlers-Danlos Syndrome Gene Panel

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Inheritance</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1A1</td>
<td>Collagen alpha-1(I) chain</td>
<td>AD</td>
<td>Classical EDS (cEDS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AD</td>
<td>Vascular EDS (vEDS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AD</td>
<td>Arthrochalasia EDS (aEDS)</td>
</tr>
<tr>
<td>COL1A2</td>
<td>Collagen alpha-2(I) chain</td>
<td>AD</td>
<td>Arthrochalasia EDS (aEDS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR</td>
<td>Cardiac valvular EDS (cvEDS)</td>
</tr>
<tr>
<td>COL3A1</td>
<td>Collagen alpha-1(III) chain</td>
<td>AD</td>
<td>Vascular EDS (vEDS)</td>
</tr>
<tr>
<td>COL5A1</td>
<td>Collagen alpha-1(V) chain</td>
<td>AD</td>
<td>Classical EDS (cEDS)</td>
</tr>
<tr>
<td>COL5A2</td>
<td>Collagen alpha-2(V) chain</td>
<td>AD</td>
<td>Classical EDS (cEDS)</td>
</tr>
<tr>
<td>FKB14</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB14 (FK506 binding protein 14)</td>
<td>AR</td>
<td>Kyphoscoliotic EDS (kEDS-FKB14)</td>
</tr>
<tr>
<td>FLNA</td>
<td>Filamin A</td>
<td>XL</td>
<td>Filamin A related EDS with periventricular nodular heterotopia</td>
</tr>
<tr>
<td>PLOD1</td>
<td>Procollagen-lysine 5-dioxygenase</td>
<td>AR</td>
<td>Kyphoscoliotic EDS (kEDS â&#128;&#147; PLOD1)</td>
</tr>
<tr>
<td>SLC39A13</td>
<td>Zinc transporter ZIP13</td>
<td>AR</td>
<td>Spondylodysplastic EDS (spEDS-SLC39A13)</td>
</tr>
</tbody>
</table>

Abbreviations: Autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), Ehlers-Danlos syndrome (EDS)

Reference Values

An interpretive report will be provided.

Interpretation

Evaluation and categorization of variants is performed using the most recent published American College of Medical Genetics and Genomics (ACMG) recommendations as a guideline. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and predictions made by these tools may change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Cautions

Clinical Correlations:

Some individuals who have involvement of 1 or more of the genes on the panel may have a variation that is not
identified by the methods performed (e.g., promoter variants, deep intronic variants). The absence of a variant, therefore, does not eliminate the possibility of disease.

Test results should be interpreted in context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

For predictive testing of asymptomatic individuals, it is often useful to first test an affected family member. Identification of a pathogenic variant in an affected individual allows for more informative testing of at-risk individuals.

Technical Limitations:

Next generation sequencing (NGS) may not detect all types of genetic variants. Additionally, rare polymorphisms may be present that could lead to false negative or positive results. If results do not match clinical findings, consider alternative methods for analyzing these genes, such as Sanger sequencing.

If the patient has had an allogeneic blood or bone marrow transplant or a recent (i.e., <6 weeks from time of sample collection) heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants Policy:

At this time, it is not standard practice for the laboratory to systematically review likely pathogenic variants or variants of uncertain significance that are detected and reported. The laboratory encourages health care providers to contact the laboratory at any time to learn how the status of a particular variant may have changed over time. Consultation with a genetics professional should be considered for interpretation of this result.

A list of benign and likely benign variants detected for this patient is available from the laboratory upon request.

Contact the laboratory if additional information is required regarding the transcript or human genome assembly used for the analysis of the patient's results.

Clinical Reference

Performance

Method Description

Next generation sequencing (NGS) is performed using an Illumina instrument with paired-end reads. The DNA is
prepared for NGS using a custom Agilent SureSelect Target Enrichment System. Data is analyzed with a bioinformatics software pipeline for sequence variants and the presence of large intragenic deletions and duplications. Supplemental Sanger sequencing or qPCR may be performed occasionally in regions where NGS is insufficient for data capture or not specific enough to correctly identify a variant. Sanger sequencing or qPCR may also be used for confirmatory testing.(Unpublished Mayo method)

The following genes are evaluated in this multi-gene panel:

ADAMTS2, ATP7A, CHST14, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, FKBP14, FLNA, PLDP1, SLC39A13

PDF Report

No

Day(s) and Time(s) Test Performed

Wednesday; Varies

Analytic Time

2 weeks

Maximum Laboratory Time

4 weeks

Specimen Retention Time

Extracted DNA: 2 months

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to [Test Prices](#) for detailed fee information.
- Clients without access to Test Prices can contact [Customer Service](#) 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact [Customer Service](#).

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information

81479

81408 x 2

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSGP</td>
<td>Ehlers-Danlos Syndrome Gene Panel</td>
<td>93200-4</td>
</tr>
<tr>
<td>Result ID</td>
<td>Test Result Name</td>
<td>Result LOINC Value</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>601731</td>
<td>Gene(s) Evaluated</td>
<td>36908-2</td>
</tr>
<tr>
<td>601732</td>
<td>Result Summary</td>
<td>47997-2</td>
</tr>
<tr>
<td>601733</td>
<td>Result Details</td>
<td>82939-0</td>
</tr>
<tr>
<td>601734</td>
<td>Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>601735</td>
<td>Additional Information</td>
<td>48767-8</td>
</tr>
<tr>
<td>601736</td>
<td>Method</td>
<td>49549-9</td>
</tr>
<tr>
<td>601737</td>
<td>Disclaimer</td>
<td>62364-5</td>
</tr>
<tr>
<td>601738</td>
<td>Reviewed By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>