Overview

Useful For
Identifying lung tumors that may respond to targeted therapies by assessing multiple gene targets simultaneously in EGFR, BRAF, KRAS, HRAS, NRAS, ALK, ERBB2, MET, ALK, ROS1, RET, and NTRK1 genes.

Diagnosis and management of patients with lung cancer

This test is not intended for use for hematological malignancies.

Genetics Test Information
This test uses targeted next-generation sequencing to evaluate for somatic mutations within the EGFR, BRAF, KRAS, HRAS, NRAS, ALK, ERBB2, and MET genes. Next-generation sequencing is also used to identify rearrangements (fusions) involving ALK, ROS1, RET, and NTRK1. See Targeted Gene Regions Interrogated by Lung Panel and Activated/Partner Gene Breakpoints Resulting in Targeted Fusion Transcripts Interrogated by Lung Panel in Special Instructions for details regarding the targeted gene regions evaluated by this test.

Of note, this test is performed to evaluate for somatic mutations and rearrangements (fusions) within solid tumor samples. This test is not intended for use for hematological malignancies. Additionally, this test does not assess for germline alterations within the genes listed.

This test identifies activating exon 14 skipping mutations in MET.

Highlights
Evaluates formalin-fixed, paraffin-embedded tumor or cytology slides from patients with lung cancer for gene mutations and rearrangements (fusions) to identify candidates for targeted therapy.

Current data suggests that the efficacy of EGFR-targeted therapies in patients with non-small cell lung cancer is limited to tumors with mutations in the EGFR gene.

Current data suggests that lung carcinomas with ALK rearrangements may be sensitive to ALK inhibitors.

Additional Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIRV</td>
<td>Slide Review in MG</td>
<td>No, (Bill Only)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Testing Algorithm
When this test is ordered, slide review will always be performed at an additional charge.

Special Instructions
- Targeted Gene Regions Interrogated by Lung Panel
- Activated/Partner Gene Breakpoints Resulting in Targeted Fusion Transcripts Interrogated by Lung Panel
- Tissue Requirements for Solid Tumor Next-Generation Sequencing

Method Name
Polymerase Chain Reaction (PCR)-Based Next Generation Sequencing
NY State Available
Yes

Specimen

Specimen Type
Varies

Necessary Information
Pathology report (final or preliminary) at minimum containing the following information must accompany specimen in order for testing to be performed:

1. Patient name
2. Block number—must be on all blocks, slides and paperwork (can be handwritten on the paperwork)
3. Tissue collection date
4. Source of the tissue

Specimen Required

This assay requires at least 20% tumor nuclei.

- Preferred amount of tumor area with sufficient percent tumor nuclei: tissue 144 mm2
- Minimum amount of tumor area: tissue 36 mm2
- These amounts are cumulative over up to 10 unstained slides and must have adequate percent tumor nuclei.
- Tissue fixation: 10% neutral buffered formalin, not decalcified

- For specimen preparation guidance, see Tissue Requirement for Solid Tumor Next-Generation Sequencing in Special Instructions. In this document, the sizes are given as 4mm x 4mm x 10 slides as preferred: approximate/equivalent to 144 mm2 and the minimum as 3mm x 1mm x 10 slides: approximate/equivalent to 36mm2.

Preferred:

Specimen Type: Tissue block

Collection Instructions: Submit a formalin-fixed, paraffin-embedded tissue block with acceptable amount of tumor tissue.

Acceptable:

Specimen Type: Tissue slide

Slides: 1 stained and 10 unstained
Collection Instructions: Submit 1 slide stained with hematoxylin and eosin and 10 unstained, nonbaked slides with 5-micron thick sections of the tumor tissue.

Note: The total amount of required tumor nuclei can be obtained by scraping up to 10 slides from the same block.

Specimen Type: Cytology slide (direct smears or ThinPrep)

Slides: 1 to 3 slides

Collection Instructions: Submit 1 to 3 slides stained and cover slipped with a preferred total of 5000 nucleated cells or a minimum of at least 3000 nucleated cells.

Note: Glass coverslips are preferred; plastic coverslips are acceptable but will result in longer turnaround times.

Additional Information: Cytology slides will not be returned.

Forms
If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.

Specimen Minimum Volume
See Specimen Required

Reject Due To

<table>
<thead>
<tr>
<th>Other</th>
<th>Specimens that have been decalcified (all methods) Specimens that have not been formalin-fixed, paraffin-embedded</th>
</tr>
</thead>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Ambient (preferred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Targeted cancer therapies are defined as antibody or small molecule drugs that block the growth and spread of cancer by interfering with specific cell molecules involved in tumor growth and progression. Multiple targeted therapies have been approved by the FDA for treatment of specific cancers. Molecular genetic profiling is often needed to identify targets amenable to targeted therapies and to minimize treatment costs and therapy-associated risks.

Next-generation sequencing has recently emerged as an accurate, cost-effective method to identify alterations across numerous genes known to be associated with response or resistance to specific targeted therapies. This is a single assay that uses formalin-fixed paraffin-embedded tissue or cytology slides to assess for common somatic mutations and rearrangements (fusions) involving 11 genes known to be associated with lung cancer. The results of
this test can be useful for assessing prognosis and guiding treatment of individuals with lung tumors. These data can also be used to help determine clinical trial eligibility for patients with alterations in genes not amenable to current FDA-approved targeted therapies.

See Targeted Gene Regions Interrogated by Lung Panel and Activated/Partner Gene Breakpoints Resulting in Targeted Fusion Transcripts Interrogated by Lung Panel in Special Instructions for details regarding the targeted gene regions evaluated by this test.

Reference Values
An interpretative report will be provided.

Interpretation
An interpretative report will be provided.

Cautions
This test cannot differentiate between somatic and germline alterations. Additional testing may be necessary to clarify the significance of results if there is a potential hereditary risk.

DNA variants of uncertain significance may be identified.

A negative (wild-type) result does not rule out the presence of a mutation or rearrangement (fusion) that may be present but below the limits of detection of this assay.

Point mutations and small insertion/deletion mutations will be detected in the EGFR, BRAF, KRAS, HRAS, NRAS, ERBB2, ALK, and MET genes only. Gene rearrangements (fusions) involving ALK, ROS1, RET, and NTRK1 genes only will be detected. This test does not detect large single or multi-exon deletions or duplications or genomic copy number variants in any of the genes tested.

Rare polymorphisms may be present that could lead to false-negative or false-positive results. Test results should be interpreted in the context of clinical findings, tumor sampling and other laboratory data. If results obtained do not match other clinical or laboratory findings, please contact the laboratory for updated interpretation. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

Reliable results are dependent on adequate specimen collection and processing. This test has been validated on cytology slides and formalin-fixed, paraffin-embedded tissues; other types of fixatives are discouraged. Improper treatment of tissues, such as decalcification, may cause PCR failure.

Supportive Data
We have developed a next generation sequencing assay to detect somatic mutations and gene rearrangements (fusions) that can be used to assist in predicting prognosis and identifying targeted therapies for the management of patients with lung cancer. This assay has been shown to be very reproducible, having a 100% concordance for intra- and interassay reproducibility experiments.

Detection of Somatic Mutations (DNA)
We observed 96.2% concordance, detecting 75 of 78 somatic mutations that had previously been detected by various other molecular methods. These mutations included 61 SNPs and 17 Indels across ALK (n=3), BRAF (n=15), EGFR (n=17), ERBB2 (n=7), HRAS (n=2), KRAS (n=17), MET (n=5), and NRAS (n=12) genes in 70 known unique samples. No pathogenic variants were detected in the 29 unique, known mutation negative samples.

Detection of Fusion Transcripts (RNA)
We observed 100% concordance, detecting rearrangements resulting in fusion transcripts in 26 of 26 unique samples with previously detected by fluorescent in situ hybridization (FISH) or another sequencing assay. These rearrangements involved the ALK (n=19), ROS1 (n=3), and RET (n=4) genes. No fusion transcripts were detected in 72 unique samples that had mutually exclusive mutations or were negative for rearrangements as assessed by standard FISH analysis.

Clinical Reference

Performance
Method Description
Next-generation sequencing (NGS) is performed to test for the presence of a mutation in targeted regions of the EGFR, BRAF, KRAS, HRAS, NRAS, ALK, ERBB2, and MET genes. NGS is performed to test for the presence of rearrangements involving the ALK, ROS1, RET, and NTRK1 genes. See Targeted Gene Regions Interrogated by Lung Panel and Activated/Partner Gene Breakpoints Resulting in Targeted Fusion Transcripts Interrogated by Lung Panel in Special Instructions for details regarding the targeted gene regions evaluated by this test. (Unpublished Mayo method)

PDF Report
No

Day(s) and Time(s) Test Performed
Monday through Friday; Varies

Analytic Time
12 days

Maximum Laboratory Time
20 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
81445-Targeted genomic sequence analysis panel, solid organ neoplasm

Slide Review
88381-Microdissection, manual

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNGPR</td>
<td>Lung Panel with Rearrangement Tumor</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>44143</td>
<td>Result Summary</td>
<td>50397-9</td>
</tr>
<tr>
<td>44144</td>
<td>Result</td>
<td>82939-0</td>
</tr>
<tr>
<td>44145</td>
<td>Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>44146</td>
<td>Additional Information</td>
<td>48767-8</td>
</tr>
<tr>
<td>44147</td>
<td>Specimen</td>
<td>31208-2</td>
</tr>
<tr>
<td>44148</td>
<td>Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>46912</td>
<td>Tissue ID</td>
<td>80398-1</td>
</tr>
<tr>
<td>44149</td>
<td>Released By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>