Overview

Useful For
A circulating biomarker in myopathy-related mitochondrial disease as well as other conditions

Investigation of patients suspected of having a mitochondrial myopathy

This assay is not suitable for carrier detection.

Testing Algorithm
See Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm in Special Instruction.

Special Instructions
- Biochemical Genetics Patient Information
- Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm

Method Name
Enzyme-Linked Immunosorbent Assay (ELISA)

NY State Available
Yes

Specimen

Specimen Type
Plasma

Specimen Required
Collection Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Green top (sodium heparin)

Submission Container/Tube: Plastic vial

Specimen Volume: 0.5 mL

Collection Instructions:
1. Draw blood and centrifuge immediately.

2. Do not expose specimen to heat or direct sunlight.

Forms
1. Biochemical Genetics Patient Information (T602) in Special Instructions.

2. If not ordering electronically, complete, print, and send 1 of the following forms with the specimen:
Clinical and Interpretive

Clinical Information

Mitochondria perform many important metabolic functions, the most vital being the production of energy in the form of adenosine triphosphate (ATP) through the electron-transport chain and the oxidative phosphorylation system, which consists of 5 complexes (complex I-V). Each of these complexes consists of 4 to 46 subunits encoded by both nuclear and mitochondrial DNA. Mitochondrial diseases are caused by defects in any of the relevant metabolic pathways and have an estimated prevalence of 1:8,500. Mitochondrial diseases are varied, including mitochondrial DNA deletion syndromes such as Kearns-Sayre syndrome (KSS), mitochondrial depletion syndromes such as those caused by alterations in the TK2 and SUCLA2 or POLG and C10orf2 genes, and mitochondrial point mutation syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), as well as others.

The clinical features of mitochondrial diseases vary widely, but they can include lactic acidosis, myopathy, ophthalmoplegia, ptosis, cardiomyopathy, sensorineural hearing loss, optic atrophy, pigmentary retinopathy, diabetes mellitus, encephalomyopathy, seizures, and stroke-like episodes.

A diagnostic workup for a mitochondrial disorder may demonstrate elevations of the lactate-to-pyruvate ratio (LAA / Lactate, Plasma and PYR / Pyruvic Acid, Blood) and an elevated growth differentiation factor 15 (GDF15) level. GDF15 is a protein of the transforming growth factor beta superfamily. GDF15 is overexpressed in muscle and serum in patients with various types of mitochondrial diseases, including those with mitochondrial deletion, depletion, and point mutation syndromes. Therefore, increased levels of GDF15 can indicate the need for further investigations including molecular studies and muscle biopsy to confirm the presence of a possible neuromuscular mitochondrial disease.

Reference Values

3 months* and older: < or =750 pg/mL
*This test is not recommended for infants <3 months of age due to the high levels of growth differentiation factor 15 contributed from the placenta during pregnancy.

Interpretation

Abnormal results along with clinical findings may be suggestive of mitochondrial disease. Additional workup is indicated.

Cautions

This is a screening test for neuromuscular mitochondrial disease. Results can be elevated for other reasons including in individuals with cancer, cardiovascular disease, diabetes, and pregnancy.

Results are normally elevated in children younger than 3 months of age due to the high levels found in the placenta during pregnancy.

Clinical Reference

Performance

Method Description

Growth differentiation factor 15 (GDF15) ELISA is a quantitative sandwich enzyme immunoassay technique. Specimen is incubated in wells that have been coated with anti-GDF15 antibody. After incubation and washing, the wells are incubated with an enzyme-linked polyclonal antibody specific for human GDF15. After a second incubation and washing step, the wells are incubated with a substrate solution producing a blue color. A stop solution is added turning the blue color to yellow, which is then read at 450 and 570 nm on a microplate reader. The absorbance at 570 is subtracted from the absorbance at 450 to correct for optical imperfections and the resulting absorbance is directly proportional to the level of GDF15 in the specimen. (Package insert: Human GDF15 Immunoassay, R and D Systems, Inc, 2014)

PDF Report

No

Day(s) and Time(s) Test Performed

Tuesday, Friday; a.m.

Analytic Time

8 days

Maximum Laboratory Time

15 days
Specimen Retention Time

1 month

Performing Laboratory Location

Rochester

Fees and Codes

Fees
- Authorized users can sign in to [Test Prices](#) for detailed fee information.
- Clients without access to Test Prices can contact [Customer Service](#) 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact [Customer Service](#).

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information

83520

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDF15</td>
<td>Growth Differentiation Factor 15, P</td>
<td>92665-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>64637</td>
<td>Growth Differentiation Factor 15, P</td>
<td>92665-9</td>
</tr>
</tbody>
</table>