Overview

Useful For
Detecting increased blasts
Characterizing blast phenotypes
Identifying abnormal patterns of myeloid maturation as seen in myelodysplastic syndromes and other clonal myeloid neoplasms
Providing additional adjunct diagnostic information in cases with equivocal or suspicious morphologic features for myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasms including chronic myelomonocytic leukemia, and other clonal myeloid neoplasms

Highlights
This assay, when used in combination with appropriate review of the clinical history, morphologic, cytogenetic, and molecular genetic data, may provide helpful diagnostic information in evaluating bone marrow specimens for possible involvement by a myelodysplastic syndrome (MDS) or a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) including chronic myelomonocytic leukemia (CMML).
In addition to detecting increased blasts, this assay also analyzes blast phenotypes and patterns of myeloid maturation. The diagnostic contribution of this assay, thus, does not rely solely on identifying blast increases.
This assay is not intended for prognostication or monitoring of response to therapy.

Reflex Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCINS</td>
<td>Flow Cytometry Interp,16 or greater</td>
<td>No, (Bill Only)</td>
<td>No</td>
</tr>
</tbody>
</table>

Additional Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD1</td>
<td>Flow Cytometry, Cell Surface, Addl</td>
<td>No, (Bill only)</td>
<td>Yes</td>
</tr>
<tr>
<td>FIRST</td>
<td>Flow Cytometry, Cell Surface, First</td>
<td>No, (Bill only)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Testing Algorithm
This assay uses 2 panels for identifying cell populations of interest and for characterizing their phenotypic features. In the myelodysplastic syndrome panel, blasts are identified by CD45/side scatter gating strategy and by CD34 expression; promyelocytes are identified by bright CD13, CD33, and CD117 expression without CD34; granulocytes and precursors are defined by their variable expression of CD13 and CD16 according to their maturational stages. Abnormal patterns of myeloid maturation are determined according to the presence or absence of the following
features: distinct blast increases over 5%; heterogeneous blast distribution on CD13/HLA-DR plot; expression of CD2, CD7, and/or CD56 on blasts; and disrupted granulocytic maturation on CD13/CD16 plot.\(^{(1,2)}\)

Additionally, a triage panel is performed to ensure that monotypic B-cells, increased plasma cells, and phenotypically aberrant populations of CD3-positive T-cells and CD16-positive/CD3-negative natural killer (NK) cells, if present, are identified. This is necessary especially for cases where the reason for referral is broad, where clonal myeloid neoplasms may not be the only diagnostic consideration, or where there is incomplete clinical history and morphologic data.

These panels are used in combination with any available provided clinical history and morphologic findings to determine if any additional testing may be needed for complete disease characterization. If such additional testing is required, it will be added according to laboratory algorithms at an additional charge per unique antibody tested.

Method Name
Immunophenotyping

NY State Available
Yes

Specimen

Specimen Type
Bone Marrow

Additional Testing Requirements

If cytogenetic tests are also desired when collecting MYEFL / Myelodysplastic Syndrome by Flow Cytometry, Bone Marrow, an additional specimen should be submitted. It is important that the specimen be obtained, processed, and transported according to instructions for the other required test.

Shipping Instructions

Specimen must be received within 72 hours.

Specimen Required

Container/Tube:

- **Preferred:** Yellow top (ACD)
- **Acceptable:** Heparin, EDTA

Specimen Volume: 2-5 mL

Slides: Include 5 to 10 unstained bone marrow aspirate smears, if possible.

Collection Instructions:

1. Submission of bilateral specimens is not required.

2. Label specimen as bone marrow.

Forms

If not ordering electronically, complete, print, and send a [Hematopathology/Cytogenetics Test Request](#) (T726) with
Test Definition: MYEFL
MDS by Flow Cytometry, BM

the specimen.

Specimen Minimum Volume
1 mL

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysis</td>
<td>Mild OK; Gross reject</td>
</tr>
<tr>
<td>Lipemia</td>
<td>NA</td>
</tr>
<tr>
<td>Icterus</td>
<td>NA</td>
</tr>
<tr>
<td>Other</td>
<td>NA</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow</td>
<td>Ambient</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal hematopoietic neoplasms characterized by cytopenias due to ineffective hematopoiesis, variable degrees of dysmyelopoietic morphologic features, and increased risks of evolution to acute myeloid leukemia. Per 2008 World Health Organization recommendations, a definitive diagnosis of MDS requires identification of 1 or more of the following findings: clear-cut morphologic features of dysplasia in greater than or equal to 10% of the cells in 1 or more of the 3 hematopoietic lineages; increased (but <20%) blood or marrow blasts with or without Auer rods; and well-characterized clonal cytogenetic abnormalities.(3-4)

However, at present, in approximately 50% of MDS patients, no informative or diagnostic clonal cytogenetic abnormalities are identified. Not infrequently, morphologic review of the patient’s blood and marrow specimen is inconclusive. And yet it is important to distinguish MDS and other clonal myeloid neoplasms from other nonmalignant and nonneoplastic possibilities in the differential diagnosis such as medication effects or other toxic exposures, copper deficiency, infections, and left-shifted hematopoietic regeneration, among others.

In such settings, when used in conjunction with appropriate clinical and morphologic findings, flow cytometry immunophenotyping analysis can provide additional diagnostic information to help distinguish an underlying clonal hematopoietic neoplasm from a reactive or secondary response.(2,5)

Reference Values

An interpretive report will be provided. This test will be processed as a laboratory consultation. An interpretation of the immunophenotypic findings and, if available, morphologic features will be provided by a board-certified hematopathologist for every case.

Interpretation

The final interpretation integrates 1) the quantity of blasts; 2) blast phenotype with respect to CD13/HLA-DR expression and/or abnormal coexpression of CD2, CD7, and/or CD56; and 3) myeloid maturation patterns based on CD13/CD16 plot. In combination, the total number of abnormalities detected and the distinctiveness of the
abnormalities themselves help determine the likelihood of specimen involvement by a clonal myeloid neoplasm.

Cautions

The results of this assay are not intended to be stand-alone and need to be correlated with the patient's clinical history, findings from the primary morphologic review of blood and marrow slides, and other laboratory features including cytogenetic and molecular genetic results.

The quantity of blasts as identified and reported in this assay should **not** form the basis upon which the final diagnosis or subclassification of acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasms, or myelodysplastic/myeloproliferative neoplasms is established. For that purpose, the percentage of blasts derived from a morphologic review of the primarily prepared blood and marrow slides is required; per 2008 World Health Organization guidelines (If unable to perform at the client site, order PATHC / Pathology Consultation).

This assay should not be used to monitor response to therapy.

Clinical Reference

Performance

Method Description

Flow cytometry immunophenotyping of bone marrow is performed using the following antibodies:

Myelodysplastic Syndrome Panel: CD2, CD7, CD10, CD13, CD15, CD16, CD33, CD34, CD36, CD38, CD45, CD56, CD64, CD117, and HLA-DR

Triage Panel: CD3, CD10, CD16, CD19, CD34, CD45, and kappa and lambda immunoglobulin light chains. (Unpublished Mayo methods)

PDF Report

No

Day(s) and Time(s) Test Performed

Specimens are processed and reported Monday through Saturday.

Analytic Time

1 day
Maximum Laboratory Time
4 days

Specimen Retention Time
Remaining bone marrow, 14 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed using an analyte specific reagent. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
88184-Flow cytometry; first cell surface, cytoplasmic or nuclear marker x 1

88185-Flow cytometry; additional cell surface, cytoplasmic or nuclear marker (each) x 18

88189-Flow Cytometry Interpretation, 16 or More Markers (if appropriate)

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYEFL</td>
<td>MDS by Flow Cytometry, BM</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK086</td>
<td>MDS Panel</td>
<td>No LOINC Needed</td>
</tr>
<tr>
<td>CK092</td>
<td>Final Diagnosis</td>
<td>22637-3</td>
</tr>
<tr>
<td>CK093</td>
<td>Special Studies</td>
<td>30954-2</td>
</tr>
<tr>
<td>CK094</td>
<td>Microscopic Description</td>
<td>22635-7</td>
</tr>
</tbody>
</table>