Overview

Useful For
Rapid detection of respiratory infections caused by the following:

- Adenovirus
- Coronavirus (serotypes HKU1, NL63, 229E, OC43)
- Human metapneumovirus
- Human rhinovirus/enterovirus
- Influenza A (H1, H1-2009, H3)
- Influenza B
- Parainfluenza virus (serotypes 1-4)
- Respiratory syncytial virus (RSV)
- *Bordetella pertussis*
- *Chlamydophila pneumoniae*
- *Mycoplasma pneumoniae*

Highlights
The FilmArray respiratory panel is a multiplex PCR test capable of qualitatively detecting DNA or RNA of 20 pathogens (bacteria and viruses) in approximately 1 hour from nasopharyngeal swab specimens.

This test is used to diagnose infection caused by adenovirus, coronavirus (HKU1, NL63, 229E, OC43), human metapneumovirus, human rhinovirus/enterovirus, influenza A (H1, H1-2009, H3), influenza B, parainfluenza (1, 2, 3, 4), respiratory syncytial virus, *Bordetella pertussis*, *Chlamydophila pneumoniae*, and *Mycoplasma pneumoniae*.

Method Name
Multiplex Polymerase Chain Reaction (PCR)

NY State Available
Yes

Specimen

Specimen Type
Varies

Advisory Information
This assay is not predicted to detect SARS-coronavirus (CoV), MERS-CoV, or the 2019 novel CoV. If one of these viruses is suspected, coordinate testing through a local public health laboratory.
This test is not intended for otherwise healthy, immunocompetent patients who are likely to have a mild, self-limited respiratory infection. If testing is desired, these patients should be tested using the more targeted diagnostic assays based on their exposure history and clinical presentation.

- FLUNP / Influenza Virus Type A and Type B, and Respiratory Syncytial Virus (RSV), Molecular Detection, PCR, Nasopharyngeal Swab

- BPRP / Bordetella pertussis and Bordetella parapertussis, Molecular Detection, PCR

- MPRP / Mycoplasma pneumoniae, Molecular Detection, PCR

It is not recommended that the following tests be concomitantly ordered when this test is ordered:

- FLUNP / Influenza Virus Type A and Type B, and Respiratory Syncytial Virus (RSV), Molecular Detection, PCR, Nasopharyngeal Swab

- LADV / Adenovirus, Molecular Detection, PCR, Varies

- LENT / Enterovirus, Molecular Detection, PCR, Varies

- BPRP / Bordetella pertussis and Bordetella parapertussis, Molecular Detection, PCR, Varies

- MPRP / Mycoplasma pneumoniae, Molecular Detection, PCR, Varies

This test is appropriate for nasopharyngeal swabs only. For bronchoalveolar lavage or bronchial washings specimens, order RESLR / Respiratory Pathogen Panel, PCR, Varies.

Shipping Instructions
Specimens that cannot be shipped refrigerated to Mayo Clinic Laboratories within 3 days (72 hours) should be frozen prior to shipment. Specimens received older than 72 hours (refrigerated) or older than 30 days (frozen) will be canceled.

Specimen Required
Supplies:

Nasopharyngeal Swab (Rayon Mini-Tip Swab) (T515)

M4-RT media (T605)

Specimen Type: Nasopharyngeal Swab

Container/Tube: Culture transport swab (T515) and Viral Transport medium (eg, M4, M4-RT [T605], M5, M6, universal transport medium). See Collection Instructions.

Specimen Volume: Entire collection/1 swab

Collection Instructions: Nasopharyngeal swab specimens should be collected according to standard technique and immediately placed into viral transport media and submitted for testing.

Forms
If not ordering electronically, complete, print, and send a Microbiology Test Request (T244) with the specimen.
Specimen Minimum Volume
Nasopharyngeal swab in minimum volume of 1 mL of viral transport media (eg, M4-RT or M5)

Reject Due To
| Swab | Swab not in viral transport medium |

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Refrigerated (preferred)</td>
<td>72 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>4 hours</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information
Respiratory infections are common and generally cause self-limited illnesses in healthy, immunocompetent hosts. Viruses account for a significant percentage of respiratory diseases, but bacteria may be associated with respiratory infections. Although respiratory illnesses are frequently mild, viruses may cause significant morbidity and mortality in immunocompromised hosts (eg, transplant recipients, patients with underlying malignancies).

Influenza viruses (type A and type B) and respiratory syncytial virus (RSV) are 2 common causes of viral respiratory illness, with peak incidence in the winter and spring months in the Northern hemisphere. Both viruses can cause a clinically indistinguishable syndrome, characterized by fever, cough, headache, and general malaise. RSV is a leading cause of respiratory illness in young children. Early diagnosis of influenza and RSV is important so that 1) necessary infection control precautions can be taken if the patient is hospitalized, and 2) antiviral therapy can be considered if the patient is hospitalized or considered at high-risk for severe disease.(1) Human metapneumovirus is also a cause of respiratory illness in both children and adults.

Human rhinovirus and coronavirus (serotypes HKU1, NL63, 229E, OC43) are the causative agents of the common cold, with symptoms including runny nose, sore throat, and malaise. Infections with rhinovirus and coronaviruses are extremely common, due to the large number of serotypes of these viruses. Most infections are mild and self-limiting; however, immunocompromised hosts may suffer more severe illnesses, including lower respiratory tract disease.

Parainfluenza viruses and adenovirus are also common causes of viral infection, especially in young children. Parainfluenza viruses are most common during the spring, summer, and fall months, with symptoms including fever, runny nose, and cough. However, parainfluenza viruses may also cause more severe lower respiratory disease, such as croup or pneumonia. Adenoviruses may infect a range of organ systems, with sequelae ranging from cold-like symptoms (sore throat), to pneumonia, conjunctivitis (pink eye), or diarrhea. Similarly to the viruses described above, parainfluenza viruses and adenoviruses generally cause mild, self-limited infections but may cause severe disease in immunosuppressed patients.

Respiratory infections may also be caused by bacterial pathogens, including Bordetella pertussis, Chlamydia pneumoniae, and Mycoplasma pneumoniae. Bordetella pertussis is the causative agent of pertussis, or whooping cough, a disease characterized by prolonged cough that may be associated with an inspiratory whoop and post-tussive vomiting. Mycoplasma pneumoniae is a cause of upper respiratory infection, pharyngitis, tracheobronchitis,
and pneumonia. *Chlamydophila pneumoniae* is a rare cause of pneumonia.

**Reference Values**

Negative (for all targets)

**Interpretation**

Results are intended to aid in the diagnosis of illness and are meant to be used in conjunction with other clinical and epidemiological findings.

A negative result should not rule-out infection in patients with a high pretest probability for a respiratory infection. The assay does not test for all potential infectious agents of respiratory disease. Specimens collected too early or too late in the clinical course may not yield the organism causing disease. Negative results should be considered in the context of a patient's clinical course and treatment history, if applicable.

For immunocompromised patients who have a negative FilmArray respiratory panel test from a nasopharyngeal sample, but a high suspicion for infection, there may be additional value in testing a bronchoalveolar lavage specimen (RESLR / Respiratory Pathogen Panel, PCR, Miscellaneous Sources).

Positive results do not distinguish between a viable or replicating organism and the presence of a nonviable organism or nucleic acid, nor do they exclude the potential for coinfection by organisms not included in the panel. Nucleic acid may persist in some patients for days to weeks, even following appropriate therapy. Detection of 1 or more organisms included in this test suggests that the virus or bacteria is present in the clinical sample; however, the test does not distinguish between organisms that are causing disease and those that are present but not associated with a clinical illness. Coinfections (eg, detection of multiple viruses or bacteria or viruses and bacteria) may be observed with this test. In these situations, the clinical history and presentation should be reviewed thoroughly to determine the clinical significance of multiple pathogens in the same specimen.

**Cautions**

The detection of microbial DNA or RNA is dependent upon proper sample collection, handling, transportation, storage, and preparation. There is a risk of false-negative results due to the presence of strains with sequence variability or genetic rearrangements in the target regions of the assays.

This test is not recommended as a test of cure.

Repeat testing should not be performed on samples collected less than 7 days apart.

**Adenovirus**: Assay may show variable detection with no-respiratory serotypes within species A, D, F, and G.

**Influenza A**: Performance characteristics were established when influenza A H1-2009, A H1, and A H3 were the predominant influenza A viruses in circulation. Performance of detecting influenza A may vary if other influenza A strains are circulating or a novel influenza A virus emerges. The performance of the FilmArray respiratory panel has not been established in individuals who received influenza vaccine. Recent administration of a nasal influenza vaccine may cause false-positive results for influenza A or influenza B. Some strains of human, swine, or avian origin are predicted to react with influenza A assays leading to an Influenza A (no subtype detected) result.

Assay detects and differentiates commonly occurring influenza A hemagglutinin subtypes based on only the hemagglutinin gene, through the use of 2 influenza A assays and 3 subtyping assays for the hemagglutinin gene. Results are reported as "detected" when at least 1 of the influenza A assays and 1 of the subtyping assays are both positive. If both of the influenza A assays are positive without a hemagglutinin subtype, results are reported as influenza A (no subtype detected). Equivocal results are reported following repeat testing in 2 scenarios: 1) Neither of the influenza A assays are positive, but a hemagglutinin gene is positive, 2) One of the influenza A assays is positive, and hemagglutinin genes are negative. The assay does not detect or differentiate the influenza A
Test Definition: RESPM
Respiratory Pathogen Panel, PCR, NP

neuraminidase gene.

**Rhinovirus/Enterovirus Group:** Due to the genetic similarity of these viruses, the assay is unable to reliably differentiate them.

**Bordetella pertussis:** Some acellular vaccines contain PCR-detectable DNA. Contamination of specimens with vaccine can cause false-positive *Bordetella pertussis* PCR results. Specimens should not be collected or processed in areas that are exposed to *B. pertussis* vaccine material. Assay targets the single-copy promoter region of the pertussis toxin gene. Results of this assay may not be concordant with commonly used *Bordetella* PCR assays, which target the multicopy insertions sequences (IS481). Cross reactivity could occur with high levels or rare sequence variants of other species such as *B. bronchiseptica* and *B. parapertussis.*

**Coronavirus:** Coronavirus OC43 assay may cross-react with coronavirus HKU1. As a result, when both HKU1 and OC43 are detected in the same patient specimen, the result may be due to assay cross-reactivity. A coinfection with these 2 viruses is also possible.

**Supportive Data**

This test is FDA-approved on nasopharyngeal (NP) swabs and the manufacturer has submitted clinical performance data for this sample type.

The Clinical Virology Laboratory at Mayo Clinic conducted a thorough verification for the FilmArray Respiratory Pathogen panel assay using nasopharyngeal (NP) swabs spiked with purified, intact organisms from a commercially-available verification panel. The assay demonstrated an overall agreement of 100% with the expected results (Table 1). The Clinical Virology Laboratory also tested 41 (23 prospective and 18 archived) clinical NP samples with the FilmArray Respiratory Pathogen panel and compared the results to routine diagnostic methods (viral culture and individual real-time PCRs). After discordant results resolution, the overall agreement between the FilmArray Respiratory Pathogen panel and routine methods was 82.9%; the majority of discrepant results were due to increased detection rates by the FilmArray and the limitations of existing, routine methods.

**Table 1:** Evaluation of the FilmArray Respiratory Pathogen panel using NP samples spiked with commercially-available control material. This table summarizes the number of targets analyzed, not samples tested.

<table>
<thead>
<tr>
<th>Analytes tested by FilmArray with a result of:</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>185(A)</td>
<td>0</td>
<td>185</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>1240</td>
<td>1240</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>1240</td>
<td>1425</td>
</tr>
</tbody>
</table>

A. Among the 185 positive samples, each analyte on the FilmArray RP was positing in > or =8 samples.

A prospective study with 100 immunocompromised hosts (ICH) and 25 non-ICH compared results of the FilmArray Respiratory Panel on paired nasopharyngeal (NP) and bronchoalveolar lavage (BAL) samples. The percent of positive Respiratory Panel results using BALs for ICH and non-ICH were 27% (27/100) and 4% (1/25), respectively. The percent of positive Respiratory Panel results using NPs for ICH and non-ICH were 24% (24/100) and 8% (2/25), respectively. Most (89%) patients had concordant results between NP and BAL samples. Five (21%) ICH patients had a negative NP, but a positive BAL.
**Clinical Reference**


**Performance**

**Method Description**

The FilmArray Respiratory Panel pouch is a closed system that performs all the chemistry required to isolate, amplify, and detect nucleic acid from multiple viral and bacterial respiratory pathogens within a single nasopharyngeal swab specimen obtained from individuals suspected of respiratory tract infections. A panel contains reagents in freeze-dried form and is divided into discrete segments where the required chemical processes are carried out. Patient sample and hydration fluid are drawn by vacuum into the panel and then placed into the FilmArray instrument. The detection process operations are automated (nucleic acid purification, first stage PCR, second stage PCR, and melt analysis) and complete in about an hour in this closed system:

**Nucleic Acid Purification:** The sample is lysed by a combination of chemical and mechanical mechanisms and the liberated nucleic acid is captured, washed and eluted using magnetic bead technology.

**First-Stage PCR:** A reverse transcription step is performed to convert viral RNA into cDNA prior to amplification. The purified nucleic acid solution is combined with a preheated master mix to initiate the reverse transcription step and subsequent thermo cycling for multiplex PCR.

**Second-Stage PCR:** Products of first stage PCR are diluted and mixed with fresh PCR reagents containing an intercalating fluorescent DNA dye (LCGreen Plus, BioFire Diagnostics), which is distributed over the second stage PCR array. The individual wells of the array contain primers for different assays (in triplicate) that target specific nucleic acid sequences from each of the pathogens detected, as well as control template material.

**DNA Melting Analysis:** Temperature is slowly increased and fluorescence in each well of the array is monitored and analyzed to generate a melt curve.

**Analysis of Melt Curves:** The software evaluates the DNA melt curve for each well to determine if a PCR product was present in that well. If the melt profile indicates the presence of a PCR product, then the analysis software calculates the melting temperature of the curve, which is then compared against the expected range for the assay. When the software determines that the melt curve is positive and in range, it is called positive. When it determines that the melt curve is negative or is not in the appropriate range, it is called negative.

**Analysis of Replicates:** Melt curves of each of the 3 replicates for each assay are evaluated to determine the assay result. For an assay to be called positive, at least 2 of the 3 associated melt curves must be called positive, and the melting temperature (Tm) for at least 2 of the 3 positive melt curves must be similar (within 1 degree C). Assays that do not meet these criteria are called negative. (Instruction booklet: FilmArray Respiratory Panel (RP) CE IVD, BioFire Diagnostics, LLC., Salt Lake City, Utah. RFIT-PRT-0435-03 June 2017)
No

Day(s) and Time(s) Test Performed
Monday through Sunday; Continuously

Analytic Time
1 day

Maximum Laboratory Time
2 days

Specimen Retention Time
7 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test has been cleared or approved by the U.S. Food and Drug Administration and is used per manufacturer’s instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.

CPT Code Information
0099U

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPM</td>
<td>Respiratory Pathogen Panel, PCR, NP</td>
<td>82159-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS021</td>
<td>Specimen Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>36086</td>
<td>Adenovirus</td>
<td>In Process</td>
</tr>
<tr>
<td>36087</td>
<td>Coronavirus 229E</td>
<td>In Process</td>
</tr>
<tr>
<td>36088</td>
<td>Coronavirus HKU1</td>
<td>In Process</td>
</tr>
<tr>
<td>36089</td>
<td>Coronavirus NL63</td>
<td>In Process</td>
</tr>
<tr>
<td>36090</td>
<td>Coronavirus OC43</td>
<td>In Process</td>
</tr>
<tr>
<td>36091</td>
<td>Human Rhinovirus/ Enterovirus</td>
<td>In Process</td>
</tr>
<tr>
<td>Result ID</td>
<td>Test Result Name</td>
<td>Result LOINC Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>36093</td>
<td>Human Metapneumovirus</td>
<td>In Process</td>
</tr>
<tr>
<td>36094</td>
<td>Influenza A</td>
<td>In Process</td>
</tr>
<tr>
<td>36095</td>
<td>Influenza B</td>
<td>In Process</td>
</tr>
<tr>
<td>36096</td>
<td>Parainfluenza Virus 1</td>
<td>In Process</td>
</tr>
<tr>
<td>36097</td>
<td>Parainfluenza Virus 2</td>
<td>In Process</td>
</tr>
<tr>
<td>36098</td>
<td>Parainfluenza Virus 3</td>
<td>In Process</td>
</tr>
<tr>
<td>36099</td>
<td>Parainfluenza Virus 4</td>
<td>In Process</td>
</tr>
<tr>
<td>36100</td>
<td>Respiratory Syncytial Virus</td>
<td>In Process</td>
</tr>
<tr>
<td>36101</td>
<td>Bordetella pertussis</td>
<td>In Process</td>
</tr>
<tr>
<td>36102</td>
<td>Chlamydophila pneumoniae</td>
<td>In Process</td>
</tr>
<tr>
<td>36103</td>
<td>Mycoplasma pneumoniae</td>
<td>In Process</td>
</tr>
<tr>
<td>36312</td>
<td>Interpretation</td>
<td>59464-8</td>
</tr>
</tbody>
</table>