Test Definition: MTHP
MTHFR 2 Mutations Analysis, B

Overview

Useful For
Direct mutation analysis for the MTHFR C677T and/or A1298C mutations should be reserved for patients with coronary artery disease, acute myocardial infarction, peripheral vascular artery disease, stroke, or venous thromboembolism who have increased basal homocysteine levels or an abnormal methionine-load test.

Genetics Test Information
Tests for C677T and A1298C mutations only.

Profile Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR</td>
<td>MTHFR C677T Mutation Analysis, B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTHAC</td>
<td>MTHFR A1298C Mutation Analysis, B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Testing Algorithm
When this test is ordered, MTHFR and MTHAC mutations will always be performed together.

Special Instructions
- Informed Consent for Genetic Testing
- Coagulation Patient Information
- Informed Consent for Genetic Testing (Spanish)

Method Name
Direct Mutation Analysis

NY State Available
Yes

Specimen

Specimen Type
Whole blood

Advisory Information
Can be combined with other molecular coagulation tests:

- MTHAC / 5,10-Methylenetetrahydrofolate Reductase A1298C, Mutation, Blood
- F5DNA / Factor V Leiden (R506Q) Mutation, Blood
- PTNT / Prothrombin G20210A Mutation, Blood
Test Definition: MTHP
MTHFR 2 Mutations Analysis, B

-MTHFR / 5,10-Methylenetetrahydrofolate Reductase C677T, Mutation, Blood

Specimen Required

Container/Tube:

Preferred: Yellow top (ACD solution B)

Acceptable: Lavender top (EDTA) or blue top (sodium citrate)

Specimen Volume: Full tube

Collection Instructions:

1. Invert several times to mix blood.
2. Send specimen in original tube.

Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:
 - Informed Consent for Genetic Testing (T576)
 - Informed Consent for Genetic Testing-Spanish (T826)

2. Coagulation Patient Information (T675) in Special Instructions

Specimen Minimum Volume

1 mL blood in a 3 mL ACD tube

Reject Due To

<table>
<thead>
<tr>
<th>Gross hemolysis</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
<tr>
<td>Other</td>
<td>Extracted DNA</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>Ambient (preferred)</td>
<td>7 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerated</td>
<td>14 days</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Hyperhomocysteinemia is an independent risk factor for coronary artery disease, acute myocardial infarction,
peripheral arterial disease, stroke, and venous thromboembolism. Homocysteine is a sulfhydryl-containing amino acid formed as an intermediary during the conversion of methionine to cystathionine. Genetic or nutrition-related disturbances (eg, deficiency of vitamins B12, B6, and folic acid) may impair the transsulfuration or remethylation pathways of homocysteine metabolism and cause hyperhomocysteinemia. The enzyme MTHFR catalyzes reduction of 5,10-methylene tetrahydrofolate to 5-methyl tetrahydrofolate, the major form of folate in plasma; 5-methyl tetrahydrofolate serves as a methyl donor for remethylation of homocysteine to methionine. Patients with severe MTHFR deficiency (enzymatic activity 0%-20% of normal) develop homocysteinuria, a severe disorder with a wide range of associated clinical manifestations, including developmental delay, mental retardation, and premature vascular disease. Seven unique MTHFR mutations have been associated with homocysteinuria, all among patients who were either homozygous or compound heterozygotes for 1 or more of these mutations.

A milder deficiency of MTHFR, with approximately 50% residual enzyme activity and marked enzyme lability to heat inactivation, is associated with a cytosine to thymine mutation at nucleotide position 677, encoding for an alanine-223 to valine substitution (MTHFR C677T). A second mutation in MTHFR exon 7, A1298C, results in a conversion of a glutamic acid codon to an alanine codon. The MTHFR A1298C mutation reduces MTHFR activity to a lesser extent than C677T, but compound heterozygous MTHFR A1298C/C677T may develop hyperhomocysteinemia.

For suspected hyperhomocysteinemia, we recommend that a basal plasma homocysteine level be measured. Vitamin B12, B6, and folic acid levels should be measured in patients with hyperhomocysteinemia.

Reference Values
Negative

Interpretation
The interpretive report will include specimen information, assay information, background information, and conclusions based on the test results (negative, heterozygous MTHFR C677T, homozygous MTHFR C677T; negative, heterozygous MTHFR A1298C, homozygous MTHFR A1298C).

Cautions
Direct mutation analysis for the MTHFR C677T and/or A1298C mutations in an asymptomatic family member with a normal basal homocysteine level is not useful.

For Mayo Clinic patients, Cardiovascular, Vascular, Thrombophilia Center, Special Coagulation Clinic, and Medical Genetics consultations and counseling are available for questions regarding DNA diagnostic testing, test interpretation, and patient management, and may be especially helpful in complex cases.

Neither the MTHFR A1298C nor the C677T mutation test detects other causes of hyperhomocysteinemia, such as occur with other mutations within the MTHFR gene or the cystathionine beta-synthase gene. In addition, the MTHFR gene mutation may not be present when hyperhomocysteinemia is due to acquired disorders, such as deficiency of vitamins B12, B6, or folic acid; chronic renal failure; zinc deficiency; leukemia; psoriasis; or antifolate drug therapy.

Supportive Data
The MTHFR C677T mutation is not an independent risk factor for coronary artery disease or venous thromboembolism in the absence of hyperhomocysteinemia. Homozygosity for the mutant allele confers an increased risk of hyperhomocysteinemia when vitamin deficiency is present, especially folic acid. Heterozygosity for the mutant allele confers no risk for hyperhomocysteinemia and does not warrant intervention.

Clinical Reference

methylenetetrahydrofolate reductase. Nature Genet 1995;10:111-113

Performance

Method Description
Direct mutation analysis using PCR amplification, signal generation, and release by cleavage of sequence-specific alleles. (Invader MTHFR 677, Invader MTHFR 1298, Invader Plus Chemistry, Hologic, Madison, WI)

PDF Report
No

Day(s) and Time(s) Test Performed
Monday through Friday; 12 p.m.

Analytic Time
3 days

Maximum Laboratory Time
5 days

Specimen Retention Time
Whole blood stored 2 weeks

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to [Test Prices](#) for detailed fee information.
- Clients without access to Test Prices can contact [Customer Service](#) 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact [Customer Service](#).

Test Classification
This test has been modified from the manufacturer's instructions. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
81291
LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHP</td>
<td>MTHFR 2 Mutations Analysis, B</td>
<td>38415-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21827</td>
<td>Methyleneetrahydrofol Reduc Mut, B</td>
<td>28005-7</td>
</tr>
<tr>
<td>34701</td>
<td>MTHFR A1298C Mutation Analysis, B</td>
<td>28060-2</td>
</tr>
<tr>
<td>34702</td>
<td>MTHAC Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>21828</td>
<td>MTHFR Interpretation</td>
<td>69049-5</td>
</tr>
<tr>
<td>21830</td>
<td>MTHFR Reviewed By</td>
<td>18771-6</td>
</tr>
<tr>
<td>34703</td>
<td>MTHAC Reviewed By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>