Overview

Useful For

- Monitoring exposure to organophosphorus insecticides
- Monitoring patients with liver disease, particularly those undergoing liver transplantation
- Identifying patients who are homozygous or heterozygous for an atypical gene and have low levels of pseudocholinesterase

This test is not useful for the differential diagnosis of jaundice.

Highlights

Pseudocholinesterase (PCHE) testing has two main uses:

- Monitoring for toxic exposure in people who work with organophosphate compounds by establishing a baseline PCHE activity level. Then routine testing is used to monitor for a significant reduction in PCHE activity.

- Preoperative screening for patients with a history or family history of prolonged paralysis and apnea after the use of the muscle relaxant, succinylcholine, for anesthesia

This test can also diagnose acute organophosphate pesticide exposure.

Method Name

Colorimetric Assay

NY State Available

Yes

Specimen

Specimen Type

Serum

Necessary Information

Patient's age and sex are required.

Specimen Required

Patient Preparation: For cases of prolonged apnea following surgery, wait at least 24 hours before obtaining specimen.

Collection Container/Tube:

- **Preferred:** Serum gel
- **Acceptable:** Red top

Submission Container/Tube: Plastic vial
Test Definition: PCHE1
Pseudocholinesterase, Total, S

Specimen Volume: 1 mL

Collection Instructions:

1. Serum gel tubes should be centrifuged within 2 hours of collection.
2. Red-top tubes should be centrifuged and the serum aliquoted into a plastic vial within 2 hours of collection.

Specimen Minimum Volume
0.25 mL

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>Reject</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Refrigerated (preferred)</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>365 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>24 hours</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Serum cholinesterase, often called pseudocholinesterase (PCHE), is distinguished from acetylcholinesterase or "true cholinesterase," by both location and substrate.

Acetylcholinesterase is found in erythrocytes, in the lungs and spleen, in nerve endings, and in the gray matter of the brain. It is responsible for the hydrolysis of acetylcholine released at the nerve endings to mediate transmission of the neural impulse across the synapse.

PCHE, the serum enzyme, is also found in the liver, the pancreas, the heart, and in the white matter of the brain. Its biological role is unknown.

The organophosphorus-containing insecticides are potent inhibitors of the true cholinesterase and also cause depression of PCHE. Low values of PCHE are also found in patients with liver disease. In general, patients with advanced cirrhosis and carcinoma with metastases will show a 50% to 70% decrease. Essentially normal values are seen in chronic hepatitis, mild cirrhosis, and obstructive jaundice.

PCHE metabolizes the muscle relaxants succinylcholine and mivacurium, and therefore, alterations in PCHE will influence the physiologic effect of these drugs.

In normal individuals (approximately 94% of the population) certain drugs and other agents, such as dibucaine and fluoride, will almost completely inhibit the PCHE activity.
A small number of individuals (<1% of the population) have been shown to have genetic variants of the enzyme, and therefore, cannot metabolize the muscle relaxants succinylcholine and mivacurium and experience prolonged apnea. These individuals generally have low levels of PCHE, which is not inhibited by dibucaine or fluoride. These individuals are either homozygotes or compound heterozygotes for an atypical gene controlling PCHE.

Simple heterozygotes have also been identified who show intermediate enzyme values and inhibition.

Reference Values

Males

5320-12,920 U/L

Females

0-15 years: 5320-12,920 U/L

16-39 years: 4260-11,250 U/L

40-41 years: 5320-12,920 U/L

> or =42 years: 5320-12,920 U/L

Note: Females age 18-41 years who are pregnant or taking hormonal contraceptives, the reference interval is 3650-9120 U/L.

Interpretation

Patients with normal pseudocholinesterase (PCHE) activity show 70% to 90% inhibition by dibucaine, while patients homozygous for the abnormal allele show little or no inhibition (0%-20%) and usually low levels of enzyme.

Heterozygous patients have intermediate PCHE levels and response to inhibitors.

The atypical gene is inherited in an autosomal recessive pattern. In a positive patient, family members should be tested.

Decreasing or low levels may indicate exposure to organophosphorus insecticides, as long as liver disease and an abnormal allele have been ruled out.

Cautions

There are some homozygous and heterozygous individuals who are sensitive to succinylcholine although their total pseudocholinesterase (PCHE) values are normal. A dibucaine inhibition test is necessary to confirm the presence of the abnormal allele in these individuals.

Certain drugs and anesthetic agents may produce in-vitro inhibition of the PCHE activity. Therefore, it is recommended that blood specimens be drawn 24 to 48 hours post-operatively on those patients who have experienced prolonged apnea after surgery.

Chemotherapy may interfere with test results, depending on the impact it has on the liver. PCHE levels may be lower due to this and if so, testing should be repeated at a later date.

Method Change: Pseudocholinesterase values measured after 1-28-2020 are approximately 80% increased compared to historical values and should be interpreted in the context of the current reference interval.
In very rare cases of gammopathy, in particular type IgM (Waldenstrom macroglobulinemia), may cause unreliable results.

Clinical Reference

Performance

Method Description

Cholinesterase catalyzes the hydrolysis of butyrylthiocholine to thiocholine and butyrate. Thiocholine instantaneously reduces the yellow hexacyanoferrate (III) to the almost colorless hexacyanoferrate (II). This decrease in color can be measured photometrically. (Package insert: Roche Cholinesterase Gen 2 Reagent, c501. Roche Diagnostics Corp; V 9.0, 01/2017)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Friday; Continuously

Analytic Time

Same day/1 day

Maximum Laboratory Time

3 days

Specimen Retention Time

7 days

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.
Test Classification

This test has been cleared, approved or is exempt by the U.S. Food and Drug Administration and is used per manufacturer's instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.

CPT Code Information

82480

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCHE1</td>
<td>Pseudocholinesterase, Total, S</td>
<td>2098-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCHE1</td>
<td>Pseudocholinesterase, Total, S</td>
<td>2098-2</td>
</tr>
</tbody>
</table>