Test Definition: ALBLD
Bleeding Diath Prof, Limited

Overview

Useful For
Detection of the more common potential causes of abnormal bleeding (eg, factor deficiencies/hemophilia, von Willebrand disease, factor-specific inhibitors) and a simple screen to evaluate for an inhibitor or severe deficiency of factor XIII (rare)

This test is not useful for assessing platelet function (eg, congenital or acquired disorders such as Glanzmann thrombasthenia, Bernard-Soulier syndrome, storage pool disease, myeloproliferative disease, associated platelet dysfunction), which requires fresh platelets

Profile Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBLI</td>
<td>Limited Bleed Prof Interp</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PTSC</td>
<td>Prothrombin Time (PT), P</td>
<td>Yes, (order PTTP)</td>
<td>Yes</td>
</tr>
<tr>
<td>APTSC</td>
<td>Activated Partial Thromboplastin Time, P</td>
<td>Yes, (order APTTP)</td>
<td>Yes</td>
</tr>
<tr>
<td>TTSC</td>
<td>Thrombin Time (Bovine), P</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLFIB</td>
<td>Fibrinogen, Clauss, P</td>
<td>Yes, (order FIBTP)</td>
<td>Yes</td>
</tr>
<tr>
<td>DIMER</td>
<td>D-Dimer, P</td>
<td>Yes, (order DDITT)</td>
<td>Yes</td>
</tr>
<tr>
<td>F8A</td>
<td>Coag Factor VIII Activity Assay, P</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F_9</td>
<td>Coag Factor IX Assay, P</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FXIII</td>
<td>Factor XIII(13), Scrn</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VWAG</td>
<td>von Willebrand Factor Ag, P</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VWACT</td>
<td>von Willebrand Factor Activity, P</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Reflex Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBETH</td>
<td>Bethesda Units</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>F8IS</td>
<td>Coag Factor VIII Assay Inhib Scrn, P</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RIST</td>
<td>Ristocetin Cofactor, P</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FACTV</td>
<td>Coag Factor V Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F_7</td>
<td>Coag Factor VII Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F_10</td>
<td>Coag Factor X Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F_11</td>
<td>Coag Factor XI Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F_12</td>
<td>Coag Factor XII Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Document generated June 8, 2020 at 5:07am CDT
<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_2</td>
<td>Coag Factor II Assay, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F9_IS</td>
<td>Factor IX Inhib Scrn</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>F5_IS</td>
<td>Factor V Inhib Scrn</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PNP</td>
<td>Platelet Neutralization Procedure</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PSGN</td>
<td>Plasminogen Activity, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PAI1</td>
<td>PAI-1 Ag, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CH8</td>
<td>Chromogenic FVIII, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CH9</td>
<td>Chromogenic FIX, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ATTI</td>
<td>Antithrombin Antigen, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ATTF</td>
<td>Antithrombin Activity, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PTMSC</td>
<td>PT Mix 1:1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>APMSC</td>
<td>APTT Mix 1:1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DRV2</td>
<td>DRVVT Mix</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DRV3</td>
<td>DRVVT Confirmation</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STAACL</td>
<td>Staclot LA, P</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VWFMP</td>
<td>von Willebrand Factor Multimer, P</td>
<td>Yes, (order VWFMS)</td>
<td>No</td>
</tr>
<tr>
<td>DRV1</td>
<td>Dilute Russells Viper Venom Time, P</td>
<td>Yes, (order DRVI1)</td>
<td>No</td>
</tr>
<tr>
<td>PTFIB</td>
<td>PT-Fibrinogen, P</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SOLFM</td>
<td>Soluble Fibrin Monomer</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RTSC</td>
<td>Reptilase Time, P</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A2PI</td>
<td>Alpha-2 Plasmin Inhibitor, P</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Testing Algorithm

Initial testing includes: prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (bovine), fibrinogen, D-dimer, coagulation factor VIII activity assay, coagulation factor IX assay, von Willebrand factor antigen, von Willebrand factor (VWF) activity, factor XIII screen, and limited bleed profile interpretation.

If PT is >13.9 seconds, then PT mix will be performed at an additional charge.

If APTT is > or =38 seconds, then APTT mix and dilute Russell viper venom time (DRVVT) will be performed at an additional charge.

If DRVVT ratio is > or =1.20, then DRVVT mix and DRVVT confirm will be performed at an additional charge.

If thrombin time is > or =25.0 seconds, then reptilase time will be performed at an additional charge.

If fibrinogen is <150 mg/dL, or clinically indicated, then PT-fibrinogen will be performed at an additional charge.
If D-dimer is >500 ng/mL FEU, then soluble fibrin monomer will be performed at an additional charge.

If APTT mix is > or =38 seconds and thrombin time is <35.0 seconds (no evidence of heparin), then platelet neutralization procedure will be performed at an additional charge.

If VWF activity assay is <55% or VWF activity:VWF antigen ratio is abnormally increased, then VWF ristocetin cofactor activity assay will be performed at an additional charge. Â

If VWF antigen is <55%, the VWF activity is <55%, or the VWF activity:VWF antigen ratio is abnormal, then VWF multimer analysis will be performed at an additional charge.

If appropriate, coagulation factor assays or Staclot LA will be performed at an additional charge to clarify significant abnormalities in the screen test results.

If factor VIII result is <55%, the factor VIII inhibitor screen may be performed along with the Bethesda titering assay, if inhibitor screen is positive.

See Hemophilia Testing Algorithm in Special Instructions.

Special Instructions
- Coagulation Guidelines for Specimen Handling and Processing
- Coagulation Patient Information
- Hemophilia Testing Algorithm
- Coagulation Profile Comparison

Method Name
PTSC, APTSC, TTSC, FXIII, F8A, F_9 IBETH, F8IS, PNP, F5_IS, APSMC, DRV2, DRV3, STACL, DRV1, PTFIB: Optical Clot-Based

RIST: Ristocetin Induced Agglutination of Washed Normal Platelets

VWAG, VWACT, DIMER, SOLFM: Latex Immunoassay (LIA)

CLFIB: Clauss

NY State Available
Yes

Specimen
Specimen Type
Plasma Na Cit

Advisory Information
Multiple coagulation profile tests are available. See Coagulation Profile Comparison in Special Instructions for testing that is performed with each profile.

Shipping Instructions
Send the 6 aliquots in the same shipping container.

Necessary Information
1. If priority specimen, mark request form, give reason, and request a call-back.

2. Note if patient is currently receiving anticoagulant (eg, heparin, Coumadin [warfarin]) treatment.

3. Note if patient has been recently transfused.

Specimen Required
See Coagulation Guidelines for Specimen Handling and Processing in Special Instructions.

Patient Preparation:

1. Patient should not be receiving anticoagulant treatment (eg, warfarin, heparin). Treatment with heparin causes false-positive results of in vitro coagulation testing for lupus anticoagulant. Coumadin (warfarin) treatment may impair ability to detect the more subtle varieties of lupus-like anticoagulants.

2. Patient should also not be receiving fibrinolytic agents (streptokinase, urokinase, tissue plasminogen activator: tPA).

3. If patient has been recently transfused, it is best to perform this study pretransfusion, if possible.

Specimen Type: Platelet-poor plasma

Collection Container/Tube: Light-blue top (citrate)

Submission Container/Tube: Plastic vials

Specimen Volume: 6 mL in 6 plastic vials, each containing 1 mL

Collection Instructions:

1. Centrifuge, remove plasma, and centrifuge plasma again.

2. Freeze plasma immediately (no longer than 4 hours after collection) at -20 degrees C or, ideally < or =-40 degrees C.

Additional Information: Double-centrifuged specimen is critical for accurate results as platelet contamination may cause spurious results.

Forms

1. Coagulation Patient Information (T675) in Special Instructions.

2. If not ordering electronically, complete, print, and send a Coagulation Test Request (T753) with the specimen.

Specimen Minimum Volume
4 mL in 4 plastic vials, 1 mL each

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>Reject</td>
</tr>
</tbody>
</table>
Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Na Cit</td>
<td>Frozen</td>
<td>14 days</td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information
Bleeding problems may be associated with a wide variety of coagulation abnormalities or may be due to problems not associated with coagulation (trauma and surgery as obvious examples). A partial listing of causes follows.

- Deficiency or functional abnormality (congenital or acquired) of any of the following coagulation proteins: fibrinogen (factor I), factor II (prothrombin), factor V, factor VII, factor VIII (hemophilia A), factor IX (hemophilia B), factor X, factor XI (hemophilia C; bleeding severity not always proportionate to factor level), factor XIII (fibrin-stabilizing factor), von Willebrand factor (VWF antigen and activity), and alpha-2 plasmin inhibitor and plasminogen activator inhibitor (PAI-I; severe deficiency in rare cases). Neither alpha-2 plasmin inhibitor nor PAI-I are included as a routine bleeding diathesis assay component, but either can be performed if indicated or requested.

- Deficiency (thrombocytopenia) or functional abnormality of platelets such as congenital (Glanzmann thrombasthenia, Bernard-Soulier syndrome, storage pool disorders, etc) and acquired (myeloproliferative disorders, uremia, drugs, etc) disorders. Platelet function abnormalities cannot be studied on mailed-in specimens.

- Specific factor inhibitors (most commonly directed against factor VIII); factor inhibitors occur in 10% to 15% of the hemophilia population and are more commonly associated with severe deficiencies of factor VIII or IX (antigen <1%). The inhibitor appears in response to transfusion therapy with factor concentrates with no correlation of occurrence and amount of therapy. Factor VIII inhibitors may occur spontaneously in the postpartum patient, with certain malignancies, in association with autoimmune disorders (eg, rheumatoid arthritis, systemic lupus erythematosus), in the elderly, and for no apparent reason.

- Other acquired causes of increased bleeding include paraproteinemia; other factor-specific inhibitors, including those against factor V, factor XI; or virtually any of the coagulation proteins.

- Acute disseminated intravascular coagulation/intravascular coagulation and fibrinolysis (DIC/ICF), which is a fairly common cause of bleeding. Bleeding can also occur in patients with chronic ICF.

Reference Values
An interpretive report will be provided.

Interpretation
An interpretive report will be provided.

Cautions
No significant cautionary statements

Clinical Reference
Performance

Method Description

PTSC: Optical clot-based

Tissue thromboplastin (phospholipid and recombinantly-derived human tissue factor) and calcium are added to citrated plasma, bypassing the action of platelets and factors VIII, IX, XI, and XII in the intrinsic procoagulant pathway. The tissue thromboplastin-factor VII/VIIa complex activates factor X. Activated factor X (factor Xa) forms a complex with factor Va, calcium, and phospholipid to activate factor II (prothrombin) to thrombin. Thrombin then acts on fibrinogen (factor I) to form fibrin which clots, providing the assay endpoint (the "prothrombin time"). (Package insert: HemosIL RecombiPlasTin 2G Instrumentation Laboratory Company, Lexington, MA, R0, 9/2007)

APTSC: Optical clot-based

The activated partial thromboplastin time (APTT) assay is performed on the Beckman Coulter ACL TOP. Patient plasma is combined and incubated with an APTT reagent containing phospholipid, a negatively charged contact factor activator, and buffer. After a specified incubation time, calcium is added to trigger the coagulation process in the mixture. Subsequently, the time to clot formation is measured optically using a wavelength of 671 nm. Mixing studies (see APTTM / APTT Mix 1:1) using normal pooled plasma are performed in the Special Coagulation Laboratory on samples with a prolonged APTT, to assist in discriminating between factor deficiency states and coagulation inhibitors, unless further testing is not indicated. (Poller L: Activated partial thromboplastin time (APTT). In Laboratory Techniques in Thrombosis; A Manual. Edited by J Jesperson, RM Bertina, F Haverkate. Dordrecht and London, Kluwer Academic Publishers, 1999, pp 337-343)

TTSC: Optical clot-based

The thrombin time (TT) assay is performed on the Instrumentation Laboratory ACL TOP. Patient plasma is combined with a bovine thrombin reagent containing bovine albumin, calcium chloride, and buffer immediately triggering the coagulation process in the mixture. Time to clot formation is measured optically using a wavelength of 405 nm. (Package insert: HemosIL Thrombin Time, Instrumentation Laboratory Company, Bedford, MA. Revision 10/2011)

CLFIB: Clauss assay

DIMER: Latex immunoassay (LIA)

D-dimer is assayed in plasma by adding polystyrene latex particles coated with monoclonal antibodies specific for D-dimer domain. The latex particles agglutinate in the presence of soluble fibrin degradation products (FDP) containing the D-dimer domain. The degree of agglutination is directly proportional to the concentration of D-dimer in the sample and is determined by measuring the decrease of transmitted light caused by the aggregates (turbidimetric

VWAG: Latex immunoassay (LIA)

This assay is performed using the HemosIL von Willebrand Factor Antigen kit on the Beckman Coulter ACL TOP. This is a latex immunoassay method using microlatex particles coated with specific rabbit polyclonal antibody directed against von Willebrand factor (VWF). In the presence of VWF antigen, antibody-coated latex particles agglutinate to form aggregates of diameters greater than the wavelength of the light passing through the sample and more light is absorbed as aggregation increases. The increase in absorption is proportional to the concentration of VWF antigen present in the sample. (Veyradier A, Fressinaud E, Sigaud M, et al: A new automated method for von Willebrand factor antigen measurement using latex particles. Thromb Haemost 1999;81:320-321)

VWACT: Latex immunoassay (LIA)

This is a latex particle-enhanced immunoassay to quantify von Willebrand factor (VWF) activity in plasma. The activity of VWF is determined by measuring the increase of turbidity produced by the agglutination of the latex reagent. A specific anti-VWF monoclonal antibody adsorbed onto the latex reagent, directed against the platelet-binding site of VWF (glycoprotein Ib receptor), reacts with the VWF of patient plasma. The degree of agglutination is directly proportional to the activity of VWF in the sample and is determined by measuring the decrease of transmitted light caused by the aggregates. (Package insert: HemosIL von Willebrand Factor Activity, Instrumentation Laboratory, Lexington MA, 9/2006)

F8A: Optical clot-based

The factor VIII assay is performed on the Beckman Coulter ACL TOP using the activated partial thromboplastin time (APTT) method and a factor deficient substrate. Patient plasma is combined and incubated with a factor VIII deficient substrate (normal plasma depleted of factor VIII by immunoabsorption) and an APTT reagent. After a specified incubation time, calcium is added to trigger the coagulation process in the mixture. At which time, the time to clot formation is measured optically at a wavelength of 671 nm. (Owen CA Jr, Bowie EJW, Thompson JH Jr: Diagnosis of Bleeding Disorders. Second edition. Boston, MA, Little, Brown and Company, 1975)

F_9: Optical clot-based

The factor IX assay is performed on the Instrumentation Laboratory ACL TOP using the activated partial thromboplastin time (APTT) method and a factor deficient substrate. Patient plasma is combined and incubated with a factor IX deficient substrate (normal plasma depleted of factor IX by immunoabsorption) and an APTT reagent. After a specified incubation time, calcium is added to trigger the coagulation process in the mixture. At which time, the time to clot formation is measured optically at a wavelength of 671 nm. (Owen CA Jr, Bowie EJW, Thompson JH Jr: Diagnosis of Bleeding Disorders. Second edition. Boston, MA, Little, Brown and Company, 1975)

FXIII: Clot-based

The covalent stabilization of fibrin by thrombin-activated factor XIII (XIIIa) is the final event in the coagulation of blood. Plasma factor XIII (fibrin-stabilizing factor; FSF) zymogen consists of 2 "A" and 2 "B" subunits, the "A" subunits containing an active-center sulfhydryl grouping mediating the transamidase activity of the enzyme. The action of thrombin converts fibrinogen to fibrin monomer causing the monomeric molecules to polymerize and be held together by noncovalent hydrogen bonds. These bonds can be broken by 5 M urea or weak acid solutions in the absence of factor XIII. Subsequent to fibrin polymerization by hydrogen bonding, the action of factor XIII results in the formation of covalent bonds that cannot be broken by 5 M urea or weak acid solutions as used in this procedure (1% monochloro-acetic acid). Dissolution of a clot by urea or monochloroacetic acid is therefore a qualitative test for factor XIII activity. (Owen CA Jr, Bowie EJW, Thompson JH Jr: Diagnosis of Bleeding Disorders. Second edition.)
Test Definition: ALBLD
Bleeding Diath Prof, Limited

Boston, MA, Little, Brown and Company, 1975)

PDF Report
No

Day(s) and Time(s) Test Performed
PTSC, APTSC, TTSC, CLFIB, DIMER, F8A, F_9, FXIII: Monday through Friday
VWAG: Monday through Saturday

Analytic Time
Varies

Maximum Laboratory Time
7 days, 21 days if multimers ordered

Specimen Retention Time
7 days

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
See Individual Test IDs

CPT Code Information
85610 - PTSC
85730 - APTSC
85670 - TTSC
85384 - CLFIB
85379 - DIMER
85240 - F8A
85250 - F_9
85291 - FXIII
85246 - VWAG
85397 - VWACT
85130-Chromogenic factor VIII (if appropriate)
85130-Chromogenic factor IX (if appropriate)
85210-Factor II (if appropriate)
85220-Factor V (if appropriate)
85230-Factor VII (if appropriate)
85245-Ristocetin cofactor (if appropriate)
85247-von Willebrand factor multimer (if appropriate)
85260-Factor X (if appropriate)
85270-Factor XI (if appropriate)
85280-Factor XII (if appropriate)
85300-Antithrombin activity (if appropriate)
85301-Antithrombin antigen (if appropriate)
85335-Bethesda units (if appropriate)
85335-Factor V inhibitor screen (if appropriate)
85335-Factor VIII inhibitor screen (if appropriate)
85335-Factor IX inhibitor screen (if appropriate)
85366-Soluble fibrin monomer (if appropriate)
85385-PT-Fibrinogen (if appropriate)
85410-Alpha-2 plasmin inhibitor (if appropriate)
85415-PAI-1 Ag (if appropriate)
85420-Plasminogen Activity (if appropriate)
85597-Platelet neutralization for lupus inhibitor (if appropriate)
85598-Staclot LA (if appropriate)
85611-PT mix 1:1 (if appropriate)
85613-DRVVT (if appropriate)
85613-DRVVT mix (if appropriate)
85613-DRVVT confirm (if appropriate)
85635-Reptilase time (if appropriate)
85732-APTT mix 1:1 (if appropriate)

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBLD</td>
<td>Bleeding Diath Prof, Limited</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLFIB</td>
<td>Fibrinogen, Clauss, P</td>
<td>48664-7</td>
</tr>
<tr>
<td>TTSC</td>
<td>Thrombin Time (Bovine), P</td>
<td>46717-5</td>
</tr>
<tr>
<td>603322</td>
<td>Reviewed by</td>
<td>18771-6</td>
</tr>
<tr>
<td>F8A</td>
<td>Coag Factor VIII Activity Assay, P</td>
<td>3209-4</td>
</tr>
<tr>
<td>9068</td>
<td>Factor XIII(13).Scrn</td>
<td>3241-7</td>
</tr>
<tr>
<td>F_9</td>
<td>Coag Factor IX Assay, P</td>
<td>3187-2</td>
</tr>
<tr>
<td>VWAG</td>
<td>von Willebrand Factor Ag, P</td>
<td>27816-8</td>
</tr>
<tr>
<td>APTSC</td>
<td>Activated Partial Thrombopl Time, P</td>
<td>75506-6</td>
</tr>
<tr>
<td>DIMER</td>
<td>D-Dimer, P</td>
<td>48067-3</td>
</tr>
<tr>
<td>PTSEC</td>
<td>Prothrombin Time (PT), P</td>
<td>5902-2</td>
</tr>
<tr>
<td>VWACT</td>
<td>von Willebrand Factor Activity, P</td>
<td>68324-3</td>
</tr>
<tr>
<td>INRSC</td>
<td>INR</td>
<td>6301-6</td>
</tr>
<tr>
<td>603181</td>
<td>Limited Bleed Prof Interp</td>
<td>69049-5</td>
</tr>
</tbody>
</table>