Overview

Useful For
Aids in the biochemical diagnosis of Krabbe disease
Follow-up of individuals affected with Krabbe disease
Follow-up testing after an abnormal newborn screening result for Krabbe disease

This test is not capable of identifying carriers of Krabbe disease.

Genetics Test Information
Krabbe disease (globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by an enzyme deficiency of galactocerebrosidase (GALC).

Although Krabbe disease is clinically variable, the most common and severe form of the disorder is early infantile onset that presents with rapid neurological regression and results in early death.

This test is a second-tier assay for infants who have abnormal newborn screens with reduced galactocerebrosidase (GALC) activity and can diagnose and monitor patients with Krabbe disease and saposin A cofactor deficiency.

Highlights
Elevations in psychosine support a diagnosis of Krabbe disease; therefore, psychosine quantitation is a useful biomarker in determining if an individual has active disease, and can aid in monitoring disease progression or treatment response.

Psychosine is also elevated in saposin A cofactor deficiency, which results in a similar clinical phenotype to Krabbe disease, but patients have normal galactocerebrosidase (GALC) activity.

Testing Algorithm
See Newborn Screen Follow-up for Infantile Krabbe Disease in Special Instructions.

Special Instructions
- Biochemical Genetics Patient Information
- Newborn Screen Follow-up for Infantile Krabbe Disease

Method Name
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

NY State Available
Yes

Specimen

Specimen Type
Whole blood

Specimen Required
Container/Tube:
Preferred: Lavender top (EDTA)

Acceptable: Green top (sodium heparin), yellow top (ACD)

Specimen Volume: 2 mL

Forms
1. Biochemical Genetics Patient Information (T602) in Special Instructions.

2. If not ordering electronically, complete, print, and send an Inborn Errors of Metabolism Test Request (T798) with the specimen.

Specimen Minimum Volume
0.5 mL

Reject Due To

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysis</td>
<td>NA</td>
</tr>
<tr>
<td>Lipemia</td>
<td>NA</td>
</tr>
<tr>
<td>Icterus</td>
<td>NA</td>
</tr>
<tr>
<td>Other</td>
<td>NA</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>Refrigerated (preferred)</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Krabbe disease (globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by an enzyme deficiency of galactocerebrosidase (GALC). GALC facilitates the lysosomal degradation of psychosine (galactosylsphingosine) and 3 other substrates (galactosylceramide, lactosylceramide, and lactosylsphingosine). Krabbe disease is caused by variants in the GALC gene, and it has an estimated frequency of 1 in 100,000 births.

Eighty-five percent to 90% of patients present before the first year of life with central nervous system impairment including increasing irritability, developmental delay, and sensitivity to stimuli. Rapid neurodegeneration including white matter disease follows, with death usually occurring by age 2. Ten percent to 15% of individuals have late onset forms of the disease that are characterized by ataxia, vision loss, weakness, and psychomotor regression, presenting anytime from age 6 months to the seventh decade of life. The clinical course of Krabbe disease can be variable, even within the same family.

Newborn screening for Krabbe disease has been implemented in some states. The early (presymptomatic) identification and subsequent testing of infants at risk for Krabbe disease may be helpful in reducing the morbidity and mortality associated with this disease. While treatment is mostly supportive, hematopoietic stem cell transplantation has shown some success if performed early, usually within the first 2 months of life.
Test Definition: PSYWB
Psychosine, B

Psychosine is 1 of 4 substrates degraded by GALC and is a neurotoxin at elevated concentrations. Psychosine has been shown to be elevated in patients with symptomatic Krabbe disease or with saposin A cofactor deficiency, and therefore, may be a useful biomarker for the presence of disease or disease progression.

Reduced or absent GALC in leukocytes (CBGC / Galactocerebrosidase, Leukocytes) or dried blood spots (PLSD / Lysosomal and Peroxisomal Storage Disorders Screen, Blood Spot) along with psychosine analysis can indicate a diagnosis of Krabbe disease. Molecular sequencing of the GALC gene (KRABZ / Krabbe Disease, Full Gene Analysis and Large [30 kb] Deletion, PCR) allows for detection of the disease-causing variants in affected patients and carrier detection in family members.

Individuals with a disease phenotype similar to Krabbe disease may have saposin A cofactor deficiency. Saposin A cofactor deficiency also results in elevated psychosine levels. Testing for this condition via molecular analysis of the PSAP gene is useful in those with elevated psychosine and normal to reduced GALC activity with normal GALC sequencing.

Reference Values
Normal < 3.0 nmol/L psychosine

Interpretation
An interpretive report will be provided.

An elevation of psychosine is indicative of symptomatic Krabbe disease or symptomatic saposin A cofactor deficiency.

Cautions
Psychosine levels may be normal in patients who are not yet symptomatic or have later onset Krabbe disease or saposin A cofactor deficiency.

Supportive Data
Receiver operating characteristic (ROC) curve analysis of 220 controls and 6 patients affected with Krabbe disease yielded an area under the curve of 1.0, permitting the selection of a cutoff value yielding a positive predictive value and negative predictive value of 1.0.

Clinical Reference
Method Description

Whole blood is spotted on filter paper and allowed to dry. Internal standard is added to a dried blood spot. The extract is evaporated and reconstituted prior to injection onto a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Following separation of the structural isomers glucopsychosine (GPSY) and psychosine (PSY) by liquid chromatography, their concentrations are measured by MS/MS analysis in the multiple reaction monitoring positive mode to follow the precursor to product species transitions for PSY. The ratio of the extracted peak area of PSY to internal standard as determined by LC-MS/MS is used to calculate the concentration of PSY in the sample. (Unpublished Mayo method)

PDF Report

No

Day(s) and Time(s) Test Performed

Patients over 6 weeks of age:

Tuesday, Friday; 12 p.m.

Patients 6 weeks of age or younger:

Monday through Saturday; 4 p.m.

Sunday 1 p.m.

Analytic Time

2 days

Maximum Laboratory Time

7 days

Specimen Retention Time

Indefinitely

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information

82542

LOINC® Information
<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYWB</td>
<td>Psychosine, B</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>601917</td>
<td>Psychosine</td>
<td>In Process</td>
</tr>
<tr>
<td>601918</td>
<td>Reviewed By</td>
<td>18771-6</td>
</tr>
<tr>
<td>601919</td>
<td>Interpretation (PSYWB)</td>
<td>59462-2</td>
</tr>
</tbody>
</table>