Overview

Useful For

Determining the etiology of hereditary persistence of fetal hemoglobin (HPFH), or delta-beta-thalassemia

Diagnosing less common causes of beta-thalassemia; these large deletional beta-thalassemia mutations result in elevated hemoglobin (Hb) A2 and usually have slightly elevated Hb F levels

Distinguishing homozygous Hb S disease from a compound heterozygous Hb S/large beta-globin cluster deletion disorder (ie, Hb S/beta zero thalassemia, Hb S/delta beta zero thalassemia, Hb S/HPFH, Hb S/gamma-delta-beta-thalassemia)

Diagnosing complex thalassemias where the beta-globin gene and 1 or more of the other genes in the beta-globin cluster have been deleted

Evaluating and classifying unexplained increased Hb F percentages

Evaluating microcytic neonatal anemia

Evaluating unexplained long standing microcytosis in the setting of normal iron studies and negative alpha thalassemia testing/normal Hb A2 percentages

Confirming gene fusion hemoglobin variants such as Hb Lepore and Hb P-Nilotic

Confirming homozygosity vs hemizygosity of mutations in the beta-like genes (HBB, HBD, HBG1, HBG2)

Testing Algorithm

This test is recommended to identify a variety of conditions involving large deletions or duplications within the beta-globin gene cluster locus region including:

-Identifying large deletions causing increased hemoglobin (Hb) F levels such as hereditary persistence of fetal hemoglobin (HPFH), delta-beta thalassemias, and gamma-delta-beta-thalassemia

-Identifying beta thalassemia conditions in cases where beta gene sequencing did not find a beta-thalassemia mutation

-Confirming gene fusion hemoglobin variants such as Hb Lepore and Hb P-Nilotic

-Investigating newborns with unexplained microcytic anemia that is suspected to be caused by epsilon-gamma-delta-beta-thalassemia

-Confirming homozygosity vs hemizygosity of mutations in the beta-like genes (HBB, HBD, HBG1, HBG2)

-Investigating individuals older than 12 months of age with unexplained microcytosis and normal hemoglobin electrophoresis for whom more common causes of microcytosis such as iron deficiency and alpha-thalassemia have been excluded

This test may result as a reflex secondary to testing from several evaluations (HAEVP / Hemolytic Anemia Evaluation; HBELC / Hemoglobin Electrophoresis Cascade, Blood; MEVP / Methemoglobinemia Evaluation; REVE / Erythrocytosis Evaluation; THEVP / Thalassemia and Hemoglobinopathy Evaluation).
Method Name
Only orderable as a reflex. For more information see:

-HAEVP / Hemolytic Anemia Evaluation

-HBELC / Hemoglobin Electrophoresis Cascade, Blood

-MEVP / Methemoglobinemia Evaluation

-REVE / Erythrocytosis Evaluation

-THEVP / Thalassemia and Hemoglobinopathy Evaluation

Polymerase Chain Reaction (PCR) Analysis/Multiplex Ligation-Dependent Probe Amplification (MLPA)

NY State Available
Yes

Specimen

Specimen Type
Whole Blood EDTA

Specimen Required
Only orderable as a reflex. For more information see:

-HAEVP / Hemolytic Anemia Evaluation

-HBELC / Hemoglobin Electrophoresis Cascade, Blood

-MEVP / Methemoglobinemia Evaluation

-REVE / Erythrocytosis Evaluation

-THEVP / Thalassemia and Hemoglobinopathy Evaluation

Specimen Type: Peripheral blood

Collection Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Yellow top (ACD)

Specimen Volume: 4 mL

Collection Instructions:

1. Invert several times to mix blood.
2. Send specimen in the original tube.

Specimen Minimum Volume
2 mL

Reject Due To
No specimen should be rejected.

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood EDTA</td>
<td>Refrigerated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information
Large deletions involving the beta-globin cluster locus on chromosome 11 manifest with widely variable clinical phenotypes. Up to 10% of beta-thalassemia cases (dependent on ethnicity) are caused by large deletions in the beta-globin cluster. Other thalassemias including delta-beta-thalassemia, gamma-delta-beta-thalassemia, and epsilon-gamma-delta-beta-thalassemia also result from functional loss of genes or the locus control region (LCR) that controls globin gene expression. In addition, hereditary persistence of fetal hemoglobin (HPFH) is caused by deletions of variable size along the beta globin cluster locus. Most, but not all, of the large deletion beta globin cluster disorders are associated with variably elevated hemoglobin (Hb) F percentages that persist after 2 years of age. In addition, most manifest in microcytosis. A notable exception is HPFH, which can have normal to minimal decreased mean corpuscular volume (MCV) values. The correct classification of these deletions is important as they confer variable predicted phenotypes and some are more protective than others when found in combination with a second beta globin mutation, such as Hb S or beta thalassemia. In addition, identification of these deletions can explain lifelong microcytosis in the setting of normal iron studies and negative alpha-thalassemia molecular results.

Reference Values
Only orderable as a reflex. For more information see:

- HAEVP / Hemolytic Anemia Evaluation
- HBELC / Hemoglobin Electrophoresis Cascade, Blood
- MEVP / Methemoglobinemia Evaluation
- REVE / Erythrocytosis Evaluation
- THEVP / Thalassemia and Hemoglobinopathy Evaluation

An interpretive report will be provided.

Interpretation
An interpretive report will be provided.

Cautions
Nondeletional subtypes of beta-thalassemia or hereditary persistence of fetal hemoglobin (HPFH) are not detected
Test Definition: WBDDR
Beta Globin Cluster Locus Del/Dup,B

by this assay.

Hemoglobin electrophoresis and sequencing analysis of the beta-globin gene will be performed prior to this test to exclude other diagnoses or to indicate the diagnostic utility of this testing platform.

This test is not useful for diagnosis or confirmation of alpha-thalassemia, the most common beta-thalassemias or hemoglobin variants. It also does not detect nondeletional hereditary persistence of fetal hemoglobin.

In addition to disease-related probes, the multiplex ligation-dependent probe amplification technique utilizes probes localized to other chromosomal regions as internal controls. In certain circumstances, these control probes may detect other diseases or conditions for which this test was not specifically intended. Results of the control probes are not normally reported. However, in cases where clinically relevant information is identified, the ordering physician will be informed of the result and provided with recommendations for any appropriate follow-up testing.

Clinical Reference

Performance

Method Description
Multiplex ligation-dependent probe amplification (MLPA) is utilized to test for the presence of large deletions in the beta-globin gene.

PDF Report
No

Day(s) and Time(s) Test Performed
Wednesday; 10 a.m., Friday; 2 p.m.

Analytic Time
5 days

Specimen Retention Time
Whole Blood: 2 weeks; DNA: 3 months

Performing Laboratory Location
Rochester
Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
81363-HBB (hemoglobin, beta, beta-globin) (eg, beta thalassemia), duplication/deletion analysis

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBDDDR</td>
<td>Beta Globin Cluster Locus Del/Dup,B</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48356</td>
<td>Beta Globin Cluster Locus Del/Dup</td>
<td>50397-9</td>
</tr>
<tr>
<td>48355</td>
<td>Reviewed by</td>
<td>18771-6</td>
</tr>
<tr>
<td>48357</td>
<td>Interpretation</td>
<td>59466-3</td>
</tr>
</tbody>
</table>