Overview

Useful For
Diagnosing vitamin C deficiency
As an aid to deter excessive intake

Method Name
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

Portions of this test are covered by patent(s) held by Quest Diagnostics

NY State Available
Yes

Specimen

Specimen Type
Plasma Heparin

Shipping Instructions
Ship specimen in amber vial to protect from light.

Specimen Required

Patient Preparation: Fasting overnight (12-14 hours) (infants-draw prior to next feeding). Water can be taken as needed.

Supplies: Amber Frosted Tube, 5 mL (T192)

Collection Container/Tube: Green top (heparin)

Submission Container/Tube: Amber vial (T192)

Specimen Volume: 1 mL

Collection Instructions
1. Immediately place specimen on wet ice. Maintain specimen on wet ice and process within 4 hours of draw.

2. Centrifuge at 4 degrees C, aliquot plasma into amber vial to protect from light and freeze immediately on dry ice.

Specimen Minimum Volume
0.5 mL

Reject Due To

<table>
<thead>
<tr>
<th>Gross hemolysis</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross lipemia</td>
<td>OK</td>
</tr>
<tr>
<td>Gross icterus</td>
<td>OK</td>
</tr>
</tbody>
</table>
Clinical and Interpretive

Clinical Information

Vitamin C, also known as L-ascorbic acid or simply ascorbic acid, is a water-soluble vitamin that is naturally present in some foods, added to others, and available as a dietary supplement. Humans, unlike most animals, are unable to synthesize vitamin C endogenously, so it is an essential dietary component. Vitamin C is required for the enzymatic amidation of neuropeptides, production of adrenal cortical steroid hormones, promotion of the conversion of tropocollagen to collagen, and metabolism of tyrosine and folate. It also plays a role in lipid and vitamin metabolism and is a powerful reducing agent or antioxidant. Specific actions include: activation of detoxifying enzymes in the liver, antioxidation, interception and destruction of free radicals, preservation and restoration of the antioxidant potential of vitamin E, and blockage of the formation of carcinogenic nitrosamines. In addition, vitamin C appears to function in a variety of other metabolic processes in which its role has not been well characterized.

Prolonged deficiency of vitamin C leads to the development of scurvy, a disease characterized by an inability to form adequate intercellular substance in connective tissues. This results in the formation of swollen, ulcerative lesions in the gums, mouth, and other tissues that are structurally weakened. Early symptoms may include weakness, easy fatigue and listlessness, as well as shortness of breath, and aching joints, bones, and muscles.

The need for vitamin C can be increased by the use of aspirin, oral contraceptives, tetracycline, and a variety of other medications. Psychological stress and advancing age also tend to increase the need for vitamin C. Among the elderly, lack of fresh fruit and vegetables often adds vitamin C depletion to the inherently increased need, with development of near-scurvy status.

Reference Values

0.4-2.0 mg/dL

Interpretation

Values below 0.2 mg/dL indicate significant deficiency.

Values greater than or equal to 0.2 mg/dL and less than 0.4 mg/dL are consistent with a moderate risk of deficiency due to inadequate tissue stores.

Values of 0.4 to 2.0 mg/dL indicate adequate supply.

The actual level at which vitamin C is excessive has not been defined. Values above 3.0 mg/dL are suggestive of excess intake. Whether vitamin C in excess is indeed toxic continues to be uncertain. However, limited observations suggest that this condition may induce uricosuria and, in individuals with glucose-6-phosphate dehydrogenase deficiency, may induce increased red blood cell fragility.

Cautions

Testing of nonfasting specimens or the use of vitamin supplementation can result in elevated plasma vitamin concentrations. Reference values were established in patients who were fasting.
After consuming vitamin C, plasma values rapidly rise within 1 to 2 hours and reach peak concentration within 3 to 6 hours after ingestion.

Clinical Reference

Performance

Method Description

Samples are diluted and extracted online extraction by high-turbulence liquid chromatography, with detection by tandem mass spectrometry. (Unpublished Mayo Method)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Friday; Evening

Analytic Time

3 days

Maximum Laboratory Time

5 days

Specimen Retention Time

2 weeks

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
Test Definition: VITC
Ascorbic Acid, P

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITC</td>
<td>Ascorbic Acid, P</td>
<td>1903-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8312</td>
<td>Ascorbic Acid, P</td>
<td>1903-4</td>
</tr>
</tbody>
</table>