Overview

Useful For
Definitive, comprehensive, and economical evaluation of an individual with JAK2-negative erythrocytosis associated with lifelong sustained increased hemoglobin or hematocrit

Profile Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>REV</td>
<td>Erythrocytosis Interpretation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>A2F</td>
<td>Hemoglobin A2 and F</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>HBEL</td>
<td>Hemoglobin Electrophoresis, B</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>P50P</td>
<td>Oxygen Dissociation P50</td>
<td>Yes, (Order P50B)</td>
<td>Yes</td>
</tr>
<tr>
<td>CTRL</td>
<td>P50 Shipping Control Vial</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MASS</td>
<td>Hb Variant by Mass Spec, B</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Reflex Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDEX</td>
<td>Hemoglobin S, Scrn, B</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HEMP</td>
<td>Hereditary Erythrocytosis Mut, B</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IEF</td>
<td>IEF Confirms</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UNHB</td>
<td>Unstable Hemoglobin, B</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HPFH</td>
<td>Hemoglobin F, Red Cell Distrib, B</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ATHAL</td>
<td>Alpha-Globin Gene Analysis</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>WASQR</td>
<td>Alpha Globin Gene Sequencing, B</td>
<td>Yes, (Order WASEQ)</td>
<td>No</td>
</tr>
<tr>
<td>WBSQR</td>
<td>Beta Globin Gene Sequencing, B</td>
<td>Yes, (Order WBSEQ)</td>
<td>No</td>
</tr>
<tr>
<td>WBDDR</td>
<td>Beta Globin Cluster Locus Del/Dup,B</td>
<td>Yes, (Order WBDD)</td>
<td>No</td>
</tr>
<tr>
<td>WGSQR</td>
<td>Gamma Globin Full Gene Sequencing</td>
<td>Yes, (Order WGSEQ)</td>
<td>No</td>
</tr>
<tr>
<td>BPGMM</td>
<td>BPGM Full Gene Sequencing</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>REVB</td>
<td>Erythrocytosis Summary Interp</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Testing Algorithm

This is a consultative evaluation in which the case will be evaluated at Mayo Clinic Laboratories, the appropriate tests performed at an additional charge, and the results interpreted.

This profile evaluates for hereditary (congenital) causes of erythrocytosis. Symptoms should be long-standing or familial in nature. All cases will be tested for p50 (if shipping control is received) and hemoglobin variants (cation exchange HPLC, capillary electrophoresis and mass spectrometry) with an interpretative report. Additional testing is guided in a reflexive manner, and may include molecular testing of the HBA1/HBA2, HBB, EPOR, VHL, EGLN1(PHD2), EPAS1(HIF2a), and BPGM genes, among others, as appropriate. See Erythrocytosis Evaluation Testing Algorithm in Special Instructions. An information sheet relaying clinical history, EPO levels, and JAK2 results allows more complete interpretation, if known.

REVB / Erythrocytosis Summary Interpretation, an additional consultative interpretation that summarizes all testing, will be provided after test completion to incorporate subsequent results into an overall evaluation if any of the following molecular tests are reflexed on the REVE / Erythrocytosis Evaluation:

- ATHAL / Alpha-Globin Gene Analysis
- WASQR / Alpha-Globin Gene Sequencing, Blood
- WBSQR / Beta-Globin Gene Sequencing, Blood
- WBDDR / Beta-Globin Cluster Locus Deletion/Duplication, Blood
- WGSQR / Gamma-Globin Full Gene Sequencing
- BPGMM / 2,3-Bisphosphoglycerate Mutase, Full Gene Sequencing Analysis
- HEMP / Hereditary Erythrocytosis Mutations

The following algorithms are available in Special Instructions:

- Erythrocytosis Evaluation Testing Algorithm
- Myeloproliferative Neoplasm: A Diagnostic Approach to Bone Marrow Evaluation
- Myeloproliferative Neoplasm: A Diagnostic Approach to Peripheral Blood Evaluation

See Benign Hematology Evaluation Comparison in Special Instructions.

Special Instructions

- Informed Consent for Genetic Testing
- Myeloproliferative Neoplasm: A Diagnostic Approach to Peripheral Blood Evaluation
- Myeloproliferative Neoplasm: A Diagnostic Approach to Bone Marrow Evaluation
- Erythrocytosis Evaluation Testing Algorithm
- Metabolic Hematology Patient Information
- Benign Hematology Evaluation Comparison
- Informed Consent for Genetic Testing (Spanish)

Method Name

REV: Consultative Interpretation
A2F: Cation Exchange/High-Performance Liquid Chromatography (HPLC)

HBEL: Capillary Electrophoresis

P50P: Hemox-Analyzer Measures and Plots O(2) Saturation

IEF: Electrophoresis

MASS: Mass Spectrometry (MS)

HPFH: Flow Cytometry

UNHB: Isopropanol and Heat Stability

REVB: Consultative Interpretation

NY State Available

Yes

Specimen

Specimen Type

Control

WB Sodium Heparin

Whole Blood EDTA

Advisory Information

Polycythemia vera and acquired causes of erythrocytosis should be excluded before ordering this evaluation.

Shipping Instructions

All 3 specimens must arrive within 72 hours of draw.

Necessary Information

Include recent transfusion information.

Include most recent CBC results.

Specimen Required

A total of 3 specimens are required to perform this profile; all 3 specimens must arrive within 72 hours of draw:

- Whole blood EDTA for A2F, HBEL, MASS
- Whole blood sodium heparin for P50*
- Normal shipping control: Whole blood sodium heparin for P50*

*Please note: If no sodium heparin patient or control specimens are received, the P50 test cannot be performed.

Patient:
Container/Tube: Lavender top (EDTA) and green top (heparin)

Specimen Volume:

- EDTA: 5 mL
- Heparin: 4 mL

Collection Instructions:

1. Immediately refrigerate specimens after draw.
2. Send specimen in original tube. **Do not aliquot.**
3. Rubber band patient specimen and control vial together.

Normal Shipping Control:

Container/Tube: Green top (heparin)

Specimen Volume: 4 mL

Collection Instructions:

1. Draw a control specimen from a normal (healthy), unrelated, nonsmoking person at the same time as the patient.
2. Label clearly on outermost label **normal control.**
3. Immediately refrigerate specimen after draw.
4. Send specimen in original tube. **Do not aliquot.**
5. Rubber band patient specimen and control vial together.

Forms

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:
 - Informed Consent for Genetic Testing (T576)
 - Informed Consent for Genetic Testing-Spanish (T826)

2. Metabolic Hematology Patient Information (T810) is available in Special Instructions.

Specimen Minimum Volume

- EDTA Blood: 2.5 mL
- Heparin Blood: 1 mL

Reject Due To

<table>
<thead>
<tr>
<th>Hemolysis</th>
<th>Mild OK; Gross reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipemia</td>
<td>NA</td>
</tr>
</tbody>
</table>
Test Definition: REVE
Erythrocytosis Evaluation

<table>
<thead>
<tr>
<th>Icterus</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>NA</td>
</tr>
</tbody>
</table>

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Refrigerated</td>
<td>72 hours</td>
</tr>
<tr>
<td>WB Sodium Heparin</td>
<td>Refrigerated</td>
<td>72 hours</td>
</tr>
<tr>
<td>Whole Blood EDTA</td>
<td>Refrigerated</td>
<td>72 hours</td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Erythrocytosis (polycythemia) is identified by a sustained increase in hemoglobin or hematocrit. An isolated increase in RBC count (in the absence of chronic phlebotomy or coincident iron deficiency) is not within the definition of erythrocytosis and may occur in thalassemia or other causes. Erythrocytosis may occur as a primary disorder, due to an intrinsic defect of bone marrow stem cells, or secondary, in response to increased serum erythropoietin (EPO) levels. Secondary erythrocytosis is associated with a number of disorders including chronic lung disease, chronic increase in carbon monoxide, cyanotic heart disease, high-altitude living, renal cysts and tumors, hepatoma, and other EPO-secreting tumors. When these common causes of secondary erythrocytosis are excluded, a heritable cause involving hemoglobin or erythrocyte regulatory mechanisms may be present. It is important to differentiate polycythemia vera (PV) from heritable causes of erythrocytosis, the latter of which can be passed to progeny but do not carry the risks of clonal evolution associated with PV.

The most common cause of hereditary erythrocytosis is the presence of a high-oxygen-affinity hemoglobin (HOA). A subset of hemoglobins with increased oxygen (O2) affinity result in clinically evident erythrocytosis caused by decreased O2 unloading at the tissue level. The most common symptoms are headache, dizziness, tinnitus, and memory loss. The affected individuals are plethoric, but not cyanotic. Patients with a HOA hemoglobin may present with an increased hemoglobin concentration, and hematocrit, but normal leukocyte and platelet counts. The p50 values are low. Changes to the amino acid sequence of the hemoglobin molecule may distort the molecular structure, affecting O2 transport and the binding of 2,3-BPG. 2,3-BPG is critical to O2 transport of erythrocytes because it regulates the O2 affinity of hemoglobin. A decrease in the 2,3-BPG concentration within erythrocytes results in greater O2 affinity of hemoglobin and reduction in O2 delivery to tissues. A few cases of erythrocytosis have been described as being due to a reduction in 2,3-BPG formation. This is most commonly due to mutations in the converting enzyme, bisphosphoglycerate mutase (BPGM). Mutations in the genes EPOR, EPAS1(HIF2A), EGLN1(PHD2), and VHL also cause hereditary erythrocytosis and a subset are associated with pheochromocytoma and paragangliomas. The prevalence of these mutations is unknown, but they appear less prevalent than mutations that cause high-oxygen-affinity hemoglobin variants, and much less prevalent than polycythemia vera. Because there are many causes of erythrocytosis, an algorithmic and reflexive testing strategy is useful. Initial JAK2 V617F mutation testing and serum EPO levels are important with p50 results further stratifying JAK2-negative cases. A significant subset of HOA hemoglobin variants can be electrophoretically silent; however, most if not all of these can be isolated with addition of the mass spectrometry method. Our extensive experience with these disorders allows an economical, comprehensive evaluation with high sensitivity.

Reference Values

Definitive results and an interpretive report will be provided.

Document generated August 21, 2019 at 4:07pm CDT
Interpretation

The evaluation includes testing for a hemoglobinopathy and oxygen (O2) affinity of the hemoglobin molecule. An increase in O2 affinity is demonstrated by a shift to the left in the O2 dissociation curve (decreased p50 result). Reflex testing for EPOR, EGLN1 (PHD2), EPAS1 (HIF2a), VHL, and BPGM will be performed as needed.

A hematopathologist expert in these disorders will evaluate the case, appropriate tests are performed, and an interpretive report is issued.

Cautions

The shipping control specimen is required to adequately interpret these cases, as temperature extremes can impact the integrity of the specimen.

Clinical Reference

Performance

Method Description

Hemoglobin A2 and F:

Hemolsate of whole blood is injected into an analysis stream passing through a cartridge containing diethylaminoethyl-resin using high-performance liquid chromatography (HPLC). A preprogrammed gradient controls the elution buffer mixture that also passes through the analytical cartridge. The ionic strength of the elution buffer is raised by increasing the percentage of a second buffer. As the ionic strength of the buffer increases the more strongly retained hemoglobins elute from the cartridge. Absorbance changes are detected by a dual-wavelength filter photometer. Changes in absorbances are displayed as a chromatogram of absorbances versus time. (Huismann TH, Schroeder WA, Brodie AN, et al: Microchromatography of hemoglobins. III. A simplified procedure for the determination of hemoglobin A2. J Lab Clin Med 1975;86:700-702; Ou CN, Buffone GJ, Reimer GL, Alpert AJ: High-performance liquid chromatography of human hemoglobins on a new cation exchanger. J Chromatogr 1983;266:197-205)
Hemoglobin Electrophoresis:

The CAPILLARYS System is an automated system that uses capillary electrophoresis to separate charged molecules by their electrophoretic mobility in an alkaline buffer. Separation occurs according to the electrolyte pH and electro-osmotic flow. A sample dilution with hemolyzing solution is injected by aspiration. A high-voltage protein separation occurs and direct detection of the hemoglobin protein fractions is at 415 nm, which is specific to hemoglobins. The resulting electrophoregrams peaks are evaluated for pattern abnormalities and are quantified as a percentage of the total hemoglobin present. Examples of position of commonly found hemoglobin fractions are, from cathode to anode: Hb A2', C, A2/O-Arab, E, S, D, G-Philadelphia, F, A, Hope, Bart, J, N-Baltimore, and H. (Louahabi A, Philippe M, et al: Evaluation of a new Sebia kit for analysis of hemoglobin fractions and variants on the Capillarys system. Clin Chem Lab Med 2006;44[3]:340-345)

Oxygen Dissociation, P50:

The operating principle of the Hemox-Analyzer is based on dual wave-length spectrophotometry for the measurement of the oxygen saturation of hemoglobin (in percent) and a Clark electrode for measuring the oxygen partial pressure in millimeters of mercury. The resulting output signals from both measuring systems are fed into a computer and analyzed. (Guarnone R, Centenara E, Barosi G: Performance characteristics of Hemox-Analyzer for assessment of the hemoglobin dissociation curve. Haematologica 1995;80:426-430)

Mass spectrometry (MS) is performed using a quadrupole-time-of-flight MS (Q-ToF Premie Waters Corp, Milford, Mass, USA) and results are analyzed with Waters BioPharmalynx software. Whole blood is diluted 1:50 with purified water and cell debris removed by centrifugation. The supernatant is then diluted 1:10 with running buffer (1:1 water:methanol, 1% formic acid) and analyzed on a Q-TOF MS in MS mode using flow injection and a myoglobin lockmass. A calculated mass for each variant has been integrated into a database containing historic data of multiple method measurements and empiric MS mass peaks were used as a search criterion. (Zanella-Cleon I, Joly P, Becchi M, Francina A: Phenotype determination of hemoglobinopathies by mass spectrometry. Clin Biochem 2009;42[18]:1807-1817)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Saturday

Analytic Time

3-25 days if structural and/or molecular studies are required. (Not reported on Saturday or Sunday)

Maximum Laboratory Time

25 days

Specimen Retention Time

30 days

Performing Laboratory Location

Rochester

Fees and Codes
Test Definition: REVE
Erythrocytosis Evaluation

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
See Individual Test IDs

CPT Code Information
Erythrocytosis Evaluation
82820-Hemoglobin O2 affinity (p50)
83020-Hemoglobin electrophoresis
83021-Hemoglobin A2 and F
83789-Hemoglobin Variant by Mass Spectroscopy (MS), Blood

Hemoglobin, Unstable, Blood
83068 (if appropriate)

IEF confirms
82664 (if appropriate)

Hemoglobin F, Red Cell Distribution, Blood
88184 (if appropriate)

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVE</td>
<td>Erythrocytosis Evaluation</td>
<td>In Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2380</td>
<td>Hemoglobin A</td>
<td>20572-4</td>
</tr>
<tr>
<td>60286</td>
<td>Hb Variant by Mass Spec, B</td>
<td>73984-7</td>
</tr>
<tr>
<td>2381</td>
<td>Hemoglobin A2</td>
<td>42245-1</td>
</tr>
<tr>
<td>174</td>
<td>Erythrocytosis Interpretation</td>
<td>59466-3</td>
</tr>
<tr>
<td>37951</td>
<td>P50 Shipping Control Vial</td>
<td>No LOINC Needed</td>
</tr>
<tr>
<td>37950</td>
<td>Oxygen Dissociation P50, RBC</td>
<td>65343-6</td>
</tr>
<tr>
<td>37948</td>
<td>Reviewed By</td>
<td>59465-5</td>
</tr>
<tr>
<td>2382</td>
<td>Hemoglobin F</td>
<td>42246-9</td>
</tr>
<tr>
<td>2383</td>
<td>Variant</td>
<td>32017-6</td>
</tr>
</tbody>
</table>

Document generated August 21, 2019 at 4:07pm CDT
<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>29224</td>
<td>Variant 2</td>
<td>32017-6</td>
</tr>
<tr>
<td>29225</td>
<td>Variant 3</td>
<td>32017-6</td>
</tr>
<tr>
<td>2101</td>
<td>Interpretation</td>
<td>78748-1</td>
</tr>
</tbody>
</table>