Overview

Useful For
Prenatal diagnosis of copy number changes (gains or losses) across the entire genome

Determining the size, precise breakpoints, gene content, and any unappreciated complexity of abnormalities detected by other methods such as conventional chromosome and fluorescence in situ hybridization (FISH) studies

Determining if apparently balanced abnormalities identified by previous conventional chromosome studies have cryptic imbalances, since a proportion of such rearrangements that appear balanced at the resolution of a chromosome study are actually unbalanced when analyzed by higher-resolution chromosomal microarray

Assessing regions of homozygosity related to uniparental disomy or identity by descent

Genetics Test Information
Cultures from this specimen will be discarded 10 days after all cytogenetic test results have been reported. If further testing is desired, call the laboratory at 507-284-1668.

Testing Algorithm
Maternal cell contamination (MCC) testing will be performed at no additional charge if a maternal blood sample is received to rule out the presence of maternal cells in the prenatal sample, see Additional Testing Requirements.

If an insufficient sample is received or MCC is identified in the prenatal sample, microarray testing will be performed on cultured material.

The following algorithms are available in Special Instructions:

- Prenatal Aneuploidy Screening and Diagnostic Testing Options
- High-Risk Pregnancy Based on Fetal Malformations or Positive Serum Screen: Laboratory Testing Algorithm

Special Instructions

- Informed Consent for Genetic Testing
- Chromosomal Microarray Prenatal Patient Information
- High-Risk Pregnancy Based on Fetal Malformations or Positive Serum Screen: Laboratory Testing Algorithm
- Prenatal Aneuploidy Screening and Diagnostic Testing Options
- Informed Consent for Genetic Testing (Spanish)

Method Name
Chromosomal Microarray

NY State Available
Yes

Specimen

Specimen Type
Varies
Test Definition: CMAP
Chromosomal Microarray, Prenatal

Ordering Guidance
This test does not detect balanced chromosome rearrangements such as Robertsonian or other reciprocal translocations, inversions, or balanced insertions. These abnormalities may be identified by chromosome analysis (see CHRAF / Chromosome Analysis, Amniotic Fluid or CHRCV / Chromosome Analysis, Chorionic Villus Sampling).

If the reason for testing or specimen type received indicates a fetal demise, the test will be cancelled and CMAPC / Chromosomal Microarray, Autopsy, Products of Conception, or Stillbirth will be added and performed as the appropriate test.

Additional Testing Requirements
A maternal blood sample is requested when ordering this test (see PPAP / Parental Sample Prep for Prenatal Microarray Testing); the PPAP test must be ordered under a different order number than the prenatal specimen.

A paternal blood sample is desired but not required (see PPAP / Parental Sample Prep for Prenatal Microarray Testing).

Portions of the specimen may be used for other tests such as measuring markers for neural tube defects (eg, AFPA / Alpha-Fetoprotein, Amniotic Fluid), molecular genetic testing, biochemical testing, and chromosome and FISH testing (including CHRAF / Chromosome Analysis, Amniotic Fluid; CHRCV / Chromosome Analysis, Chorionic Villus Sampling; and PADF / Prenatal Aneuploidy Detection, FISH).

If additional molecular genetic or biochemical genetic testing is needed, order CULAF / Culture for Genetic Testing, Amniotic Fluid or CULFB / Fibroblast Culture for Genetic Testing so that cultures may be set up specifically for use in these tests.

Shipping Instructions
Advise Express Mail or equivalent if not on courier service.

Necessary Information
1. Provide a reason for referral with each specimen. The laboratory will not reject testing if this information is not provided, but appropriate testing and interpretation may be compromised or delayed.

2. Notify the laboratory if the pregnancy involves an egg donor or gestational carrier.

Specimen Required
Submit only 1 of the following specimens:

Supplies: CVS Media (RPMI) and Small Dish (T095)

Specimen Type: Chorionic villi

Container/Tube: 15-mL tube containing 15-mL of transport media

Specimen Volume: 20-30 mg

Collection Instructions:
1. Collect specimen by the transabdominal or transcervical method.

2. Transfer chorionic villi to a Petri dish containing transport medium (Such as CVS Media [RPMI] and Small Dish).
3. Using a stereomicroscope and sterile forceps, assess the quality and quantity of the villi and remove any blood clots and maternal decidua.

Supplies: Refrigerate/Ambient Shipping Box, 5 lb (T329)

Specimen Type: Amniotic fluid

Container/Tube: Amniotic fluid container

Specimen Volume: 20-30 mL

Collection Instructions:

1. Optimal timing for specimen collection is during 14 to 18 weeks of gestation, but specimens collected at other weeks of gestation are also accepted. Provide gestational age at the time of amniocentesis.

2. Discard the first 2 mL of amniotic fluid.

3. Place the tubes in a Refrigerate/Ambient Shipping Box, 5 lb.

4. Fill remaining space with packing material.

Additional Information:

1. Unavoidably, about 1% to 2% of mailed-in specimens are not viable.

2. Bloody specimens are undesirable.

3. Results will be reported and also telephoned or faxed, if requested.

Forms

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:
 - **Informed Consent for Genetic Testing** (T576)
 - **Informed Consent for Genetic Testing-Spanish** (T826)

2. **Chromosomal Microarray Prenatal Patient Information** (T716) in Special Instructions.

Specimen Minimum Volume

Amniotic Fluid: 12 mL
Chorionic Villi: 12 mg; If ordering in conjunction with other testing: If ordered with PADF: 14 mL or 14 mg; with CHRAF: 24 mL; with CHRCV: 24 mg; with PADF and CHRAF/CHRCV: 26 mL or 26 mg

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Clinical and Interpretive

Clinical Information

Chromosomal abnormalities cause a wide range of disorders associated with birth defects and intellectual disability. Many of these disorders can be diagnosed prenatally by analysis of chorionic villi or amniocytes.

The most common reasons for performing cytogenetic studies for prenatal diagnosis include advanced maternal age, abnormal prenatal screen, a previous child with a chromosome abnormality, abnormal fetal ultrasound, or a family history of a chromosome abnormality. Chromosomal microarray (CMA) is a high-resolution method for detecting copy number changes (gains or losses) across the entire genome in a single assay and is sometimes called a molecular karyotype. The American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine recommend the chromosomal microarray as a replacement for the fetal karyotype in patients with a pregnancy demonstrating one or more major structural abnormalities on ultrasound when undergoing invasive prenatal diagnosis.(1)

This CMA test utilizes more than 1.9 million copy number probes and approximately 750,000 single nucleotide polymorphism probes for the detection of copy number changes and regions with absence of heterozygosity. Identification of regions of excessive homozygosity on a single chromosome could suggest uniparental disomy, which may warrant further clinical investigation when observed on chromosomes with known imprinting disorders. In addition, the detection of excessive homozygosity on multiple chromosomes may suggest consanguinity.

Reference Values

An interpretive report will be provided.

Interpretation

Copy number variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

When interpreting results it is important to realize that copy number variation is found in all individuals, including patients with abnormal phenotypes and normal populations. Therefore, determining the clinical significance of a rare or novel copy number change can be challenging. Parental testing may be necessary to further assess the potential pathogenicity of a copy number change.

While most copy number changes observed by chromosomal microarray testing can readily be characterized as pathogenic or benign, there are limited data available to support definitive classification of a subset into either of these categories. In these situations, a number of considerations are taken into account to help interpret results including the size and gene content of the imbalance, whether the change is a deletion or duplication, the inheritance pattern, and the clinical and developmental history of a transmitting parent.

All copy number variants within the limit of detection classified as pathogenic or likely pathogenic will be reported regardless of size. This includes but is not limited to incidental findings currently recommended for reporting by the American College of Medical Genetics and Genomics (ACMG).(2) Copy number changes with unknown significance will be reported when at least one protein-coding gene is involved in a deletion greater than 1 megabase (Mb) or a duplication greater than 2 Mb.

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Refrigerated (preferred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The detection of excessive homozygosity may suggest the need for additional clinical testing to confirm uniparental disomy (UPD) or to test for variants in genes associated with autosomal recessive disorders consistent with the patient's clinical presentation that are present in regions of homozygosity. Regions with absence of heterozygosity (AOH) of unknown significance will be reported when greater than 5 Mb (terminal) and 10 Mb (interstitial) on UPD-associated chromosomes. Whole genome AOH will be reported when greater than 10% of the genome.

The continual discovery of novel copy number variation and published clinical reports means that the interpretation of any given copy number change may evolve with increased scientific understanding.

Cautions

This test does not detect all types and instances of uniparental disomy.

This test is not designed to detect low-level mosaicism, although it can be detected in some cases.

This test does not detect point alterations, small deletions or insertions below the resolution of this assay, or other types of variants such as epigenetic changes.

The results of this test may reveal incidental findings not related to the original reason for referral. In such cases, studies of additional family members may be required to help interpret the results.

Supportive Data

The array was validated by testing 40 prenatal specimens (direct and cultured amniotic fluid and chorionic villus samples) previously tested using chromosome analysis, fluorescence in situ hybridization (FISH) analysis, or a polymerase chain reaction (PCR)-based assay. All abnormalities previously identified by another methodology were confirmed.

Clinical Reference

Performance

Method Description

DNA extracted from amniotic fluid or chorionic villus sample is labeled and hybridized to the microarray. Following hybridization, the microarray is scanned and the intensity of signals is measured and compared to a reference data...
Test Definition: CMAP
Chromosomal Microarray, Prenatal

set. These data are used to determine copy number changes and regions of excess homozygosity. Chromosomal microarray data alone does not provide information about the structural nature of an imbalance and some abnormal results may be characterized by fluorescence in situ hybridization (FISH), limited chromosome analysis, or additional techniques. (Unpublished Mayo method)

PDF Report
No

Day(s) Performed
Monday through Friday

Report Available
10 to 21 days

Specimen Retention Time
Amniotic Fluid: Any remaining supernatant or whole fluid aliquots are discarded 14 days after results are reported. Chorionic Villi: Any remaining specimen is discarded at the time results are reported.

Performing Laboratory Location
Rochester

Fees and Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information
81229

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAP</td>
<td>Chromosomal Microarray, Prenatal</td>
<td>86611-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>54714</td>
<td>Result Summary</td>
<td>50397-9</td>
</tr>
<tr>
<td>54715</td>
<td>Result</td>
<td>62356-1</td>
</tr>
<tr>
<td>54716</td>
<td>Nomenclature</td>
<td>62356-1</td>
</tr>
<tr>
<td>54717</td>
<td>Interpretation</td>
<td>69965-2</td>
</tr>
<tr>
<td>CG900</td>
<td>Reason For Referral</td>
<td>42349-1</td>
</tr>
<tr>
<td>CG780</td>
<td>Specimen</td>
<td>31208-2</td>
</tr>
<tr>
<td>Result ID</td>
<td>Test Result Name</td>
<td>Result LOINC Value</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>54718</td>
<td>Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>54719</td>
<td>Method</td>
<td>49549-9</td>
</tr>
<tr>
<td>53422</td>
<td>Additional Information</td>
<td>48767-8</td>
</tr>
<tr>
<td>54720</td>
<td>Released By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>