Overview

Useful For
Estimation of glomerular filtration rate

Profile Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRTS1</td>
<td>Creatinine with eGFR, S</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CRCU</td>
<td>Creatinine, U</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Special Instructions
- Urine Preservatives-Collection and Transportation for 24-Hour Urine Specimens

Method Name
Enzymatic Colorimetric Assay

NY State Available
Yes

Specimen

Specimen Type
Serum
Urine

Necessary Information
1. 24-Hour volume is required.

2. Patient's height in centimeters and weight in kilograms are required.

Specimen Required
Both serum and urine are required. Serum must be collected no earlier than 24 hours before start of urine collection and no later than 24 hours after urine collection is completed.

Specimen Type: Serum

Container/Tube: Red top or serum gel

Specimen Volume: 1 mL

Collection Instructions: Label specimen as serum.

Specimen Type: Urine

Supplies: Aliquot Tube, 5 mL (T465)
Specimen Volume: 5 mL

Collection Instructions:

1. Collect urine for 24 hours.

2. Refrigerate specimen within 4 hours of completion of 24-hour collection.

3. Label specimen as urine.

Additional Information: See Urine Preservatives-Collection and Transportation for 24-Hour Urine Specimens in Special Instructions for multiple collections.

Forms

If not ordering electronically, complete, print, and send a Renal Diagnostics Test Request (T830) with the specimen.

Urine Preservative Collection Options

Note: The addition of preservative or application of temperature controls must occur within 4 hours of completion of the collection.

<table>
<thead>
<tr>
<th>Preservative</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>Preferred</td>
</tr>
<tr>
<td>Refrigerate</td>
<td>OK</td>
</tr>
<tr>
<td>Frozen</td>
<td>OK</td>
</tr>
<tr>
<td>50% Acetic Acid</td>
<td>OK</td>
</tr>
<tr>
<td>Boric Acid</td>
<td>OK</td>
</tr>
<tr>
<td>Diazolidinyl Urea</td>
<td>OK</td>
</tr>
<tr>
<td>6M Hydrochloric Acid</td>
<td>OK</td>
</tr>
<tr>
<td>6M Nitric Acid</td>
<td>OK</td>
</tr>
<tr>
<td>Sodium Carbonate</td>
<td>OK</td>
</tr>
<tr>
<td>Thymol</td>
<td>OK</td>
</tr>
<tr>
<td>Toluene</td>
<td>No</td>
</tr>
</tbody>
</table>

Specimen Minimum Volume

Serum: 0.5 mL
Urine: 1 mL

Reject Due To

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hemolysis</td>
<td>Reject</td>
</tr>
<tr>
<td>Gross lipemia</td>
<td>Reject</td>
</tr>
</tbody>
</table>

Specimen Stability Information
Test Definition: CRCL
Creatinine Clearance

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Refrigerated (preferred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>Refrigerated (preferred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical and Interpretive

Clinical Information

Estimated GFR Using Serum Creatinine Alone:

Estimated glomerular filtration rate (eGFR) is calculated using the 2009 CKD Epidemiology Collaboration (CKD-EPI) equation:

\[eGFR(\text{CKD-EPI}) = 141 \times \min(\text{Scr}/k, 1) \alpha \times \max(\text{Scr}/k, 1) - 1.209 \times 0.993 \times \text{age} \times 1.018 \text{ (if patient is female)} \times 1.159 \text{ (if patient is black)} \]

- where age is in years
- k is 0.7 for females and 0.9 for males
- \(\alpha \) is -0.329 for females and -0.411 for males
- \(\min \) indicates the minimum of \(\text{Scr}/k \) or 1
- \(\max \) indicates the maximum of \(\text{Scr}/k \) or 1

Use of an estimating or prediction equation to estimate GFR from serum creatinine should be employed for people with chronic kidney disease (CKD) and those with risk factors for CKD (diabetes, hypertension, cardiovascular disease, and family history of kidney disease). Reasons given for routine reporting of eGFR with every serum creatinine in adult (18 and over) patients include:

- GFR and creatinine clearance are poorly inferred from serum creatinine alone. GFR and creatinine clearance are inversely and nonlinearly related to serum creatinine. The effects of age, sex, and, to a lesser extent, race, on creatinine production further cloud interpretation.
- Creatinine is commonly measured in routine clinical practice. Albuminuria (>30 mg/24 hour or urine albumin to creatinine ratio >30 mg/g) may be a more sensitive marker of early renal disease, especially among patients with diabetic nephropathy. However, there is poor adherence to guidelines that suggest annual urinary albumin testing of patients with known diabetes. Therefore, if a depressed eGFR is calculated from a serum creatinine measurement, it may help providers recognize early CKD and pursue appropriate follow-up testing and therapeutic intervention.
- Monitoring of kidney function (by GFR or creatinine clearance) is essential once albuminuria is discovered. Estimated GFR is a more practical means to closely follow changes in GFR over time, when compared to direct
measurement using methods such as iothalamate clearance.

- The CKD-EPI equation does not require weight or height variables. From a serum creatinine measurement, it generates a GFR result normalized to a standard body surface area (1.73 m\(^2\)) using sex, age, and race. Unlike the Cockcroft-Gault equation, height and weight, which are often not available in the laboratory information system, are not required. The CKD-EPI equation does require race (African American or non-African American), which also may not be readily available. For this reason, eGFR values for both African Americans and non-African Americans are reported. The difference between the 2 estimates is typically about 20%. The patient or provider can decide which result is appropriate for a given patient.

The Kidney Disease: Improving Global Outcomes (KDIGO) CKD work group clinical practice guidelines,(1) as further defined by the National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) commentary,(2) provide the following recommendations for reporting and interpretation of serum creatinine and eGFR:

1.4.3: Evaluation of GFR

-1.4.3.1: We recommend using serum creatinine and a GFR estimating equation for initial assessment.

-1.4.3.2: We suggest using additional tests (such as cystatin C or a clearance measurement) for confirmatory testing in specific circumstances when eGFR based on serum creatinine is less accurate. (2B)

-1.4.3.3: We recommend that clinicians:

-- Use a GFR estimating equation to derive GFR from serum creatinine (eGFR\text{creat}) rather than relying on the serum creatinine concentration alone.

-- Understand clinical settings in which eGFR \text{creat} is less accurate.

-1.4.3.4: We recommend that clinical laboratories should:

-- Measure serum creatinine using a specific assay with calibration traceable to the international standard reference materials and minimal bias compared to isotope-dilution mass spectrometry (IDMS) reference methodology.

-- Report eGFR\text{creat} in addition to the serum creatinine concentration in adults and specify the equation used whenever reporting eGFR\text{creat}.

-- Report eGFR\text{creat} in adults using the 2009 CKD-EPI creatinine equation. An alternative creatinine-based GFR estimating equation is acceptable if it has been shown to improve accuracy of GFR estimates compared to the 2009 CKD-EPI creatinine equation.

When reporting serum creatinine:

- We recommend that serum creatinine concentration be reported and rounded to the nearest whole number when expressed as standard international units (mmol/L) and rounded to the nearest 100th of a whole number when expressed as conventional units (mg/dL).

When reporting eGFR\text{creat}:

- We recommend that eGFR\text{creat} should be reported and rounded to the nearest whole number and relative to a body surface area of 1.73 m\(^2\) in adults using the units mL/min/1.73 m\(^2\).
-We recommend eGFRcreat levels less than 60 mL/min/1.73 m(2) should be reported as “decreased”.

1.4.3.8: We suggest measuring GFR using an exogenous filtration marker under circumstances where more accurate ascertainment of GFR will impact treatment decisions

Creatinine Clearance:

Creatinine is derived from the metabolism of creatine from skeletal muscle and dietary meat intake, and is released into the circulation at a relatively constant rate. Thus, the serum creatinine concentration is usually stable. Creatinine is freely filtered by glomeruli and not reabsorbed or metabolized by renal tubules. Therefore, creatinine clearance can be used to assess GFR. However, approximately 15% of excreted urine creatinine is derived from proximal tubular secretion. Because of the tubular secretion of creatinin, creatinine clearance typically overestimates true GFR by 10% to 15%.

Creatinine clearance is usually determined from measurement of creatinine in a 24-hour urine specimen and from a serum specimen obtained during the same collection period. However, shorter time periods can be used. A key consideration is accurate timing and collection of the urine sample. Creatinine clearance normalized to body surface area is calculated by the equation:

\[
\text{Uncorr creat clear} = \frac{\text{Urine conc (mg/dL) x 24 hr urine volume (mL)}}{1440 \text{ minutes}}
\]

\[
\text{Corr creat clear} = \frac{\text{Urine conc (mg/dL) x 24 hr urine volume (mL)}}{1440 \text{ minutes} \times \frac{1.73 \text{ m}(2)}{\text{Patient SA}}}
\]

Reference Values

CREATININE CLEARANCE

Males:

0-18 years: Reference values have not been established

19-75 years: 77-160 mL/min/BSA
Test Definition: CRCL
Creatinine Clearance

> or =76 years: Reference values have not been established

Females:
0-17 years: Reference values have not been established
18-29 years: 78-161 mL/min/BSA
30-39 years: 72-154 mL/min/BSA
40-49 years: 67-146 mL/min/BSA
50-59 years: 62-139 mL/min/BSA
60-72 years: 56-131 mL/min/BSA
> or =73 years: Reference values have not been established

CREATININE, URINE:
Reported in units of mg/dL

CREATININE, SERUM

Males:
0-11 months: 0.17-0.42 mg/dL
1-5 years: 0.19-0.49 mg/dL
6-10 years: 0.26-0.61 mg/dL
11-14 years: 0.35-0.86 mg/dL
> or =15 years: 0.74-1.35 mg/dL

Females:
0-11 months: 0.17-0.42 mg/dL
1-5 years: 0.19-0.49 mg/dL
6-10 years: 0.26-0.61 mg/dL
11-15 years: 0.35-0.86 mg/dL
> or =16 years: 0.59-1.04 mg/dL

eGFR
> or =60 mL/min/BSA
Estimated GFR calculated using the 2009 CKD_EPI creatinine equation

Interpretation

Decreased creatinine clearance indicates decreased glomerular filtration rate (GFR). This can be due to conditions such as progressive renal disease, or result from adverse effect on renal hemodynamics that are often reversible, including drug effects or decreases in effective renal perfusion (eg, volume depletion, heart failure).

Increased creatinine clearance is often referred to as hyperfiltration and is most commonly seen during pregnancy or in patients with early diabetes mellitus, before diabetic nephropathy has occurred. It may also occur with large dietary protein intake.

A major limitation of creatinine clearance is that its accuracy worsens in relation to the amount of tubular creatinine secretion. Often as GFR declines, the contribution of urine creatinine from tubular secretion increases, further increasing the discrepancy between true GFR and measured creatinine clearance.

Estimated GFR:

According to the Kidney Disease: Improving Global Outcomes (KDIGO) CKD work group, chronic kidney disease (CKD) is defined as the abnormalities of kidney structure of function, present for more than 3 months, with implications for health.(1,2) CKD should be classified by cause, GFR category, and albuminuria category.(1,2)

KDIGO guidelines provide the following GFR categories(1,2):

<table>
<thead>
<tr>
<th>Stage</th>
<th>Terms</th>
<th>GFR mL/min/1.73 m(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1*</td>
<td>Normal or high</td>
<td>90</td>
</tr>
<tr>
<td>G2*</td>
<td>Mildly decreased</td>
<td>60 to 89</td>
</tr>
<tr>
<td>G3a</td>
<td>Mildly to moderately decreased</td>
<td>45 to 59</td>
</tr>
<tr>
<td>G3b</td>
<td>Moderately to severely decreased</td>
<td>30-44</td>
</tr>
<tr>
<td>G4</td>
<td>Severely decreased</td>
<td>15-29</td>
</tr>
<tr>
<td>G5</td>
<td>Kidney failure</td>
<td><15</td>
</tr>
</tbody>
</table>

*In the absence of evidence of kidney damage, neither G1 nor G2 fulfill criteria for CKD.

Urinary albumin excretion can also be used to further subdivide CKD stages.

Cautions

One of the major limitations of creatinine clearance is erroneous results due to incomplete urine collections. Accurate results depend upon a complete and accurately timed collection.

Result can be falsely decreased in patients with elevated levels of N-acetyl-p-benzoquinone imine (NAPQI, a metabolite of acetaminophen), N-acetylcysteine (NAC), and Metamizole.

Clinical Reference

3. Post TW, Rose BD: Assessment of renal function: plasma creatinine; BUN; and GFR. In Up To Date 9.1. Edited by BD Rose. 2001

Performance

Method Description

The enzymatic method is based on the determination of sarcosine from creatinine with the aid of creatininase, creatinase, and sarcosine oxidase. The liberated hydrogen peroxide is measured via a modified Trinder reaction using a colorimetric indicator. Optimization of the buffer system and the colorimetric indicator enables the creatinine concentration to be quantified both precisely and specifically. (Package insert: Roche Diagnostics, Indianapolis IN, 2004)

PDF Report

No

Day(s) and Time(s) Test Performed

Monday through Sunday; Continuously

Analytic Time

Same day/1 day

Maximum Laboratory Time

2 days

Specimen Retention Time

7 days

Performing Laboratory Location

Rochester

Fees and Codes

Fees

- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their Regional Manager. For assistance, contact Customer Service.

Test Classification

This test has been cleared, approved or is exempt by the U.S. Food and Drug Administration and is used per manufacturer's instructions. Performance characteristics were verified by Mayo Clinic in a manner consistent with CLIA requirements.
Test Definition: CRCL

Creatinine Clearance

CPT Code Information

82575

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRCL</td>
<td>Creatinine Clearance</td>
<td>58446-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRTSA</td>
<td>Creatinine, S</td>
<td>2160-0</td>
</tr>
<tr>
<td>EGNB</td>
<td>eGFR-Non Black</td>
<td>88294-4</td>
</tr>
<tr>
<td>EGBL</td>
<td>eGFR-Black</td>
<td>88293-6</td>
</tr>
<tr>
<td>CRE_U</td>
<td>Creatinine, U</td>
<td>20624-3</td>
</tr>
<tr>
<td>TM54</td>
<td>Time</td>
<td>13362-9</td>
</tr>
<tr>
<td>VL52</td>
<td>Volume</td>
<td>3167-4</td>
</tr>
<tr>
<td>CRCL1</td>
<td>Creatinine Clearance</td>
<td>12195-4</td>
</tr>
</tbody>
</table>