Overview

Useful For
Second-tier assay of newborn screening specimens when abnormal propionyl carnitine or methionine concentrations are identified in a primary newborn screen

Special Instructions
- Biochemical Genetics Patient Information
- Blood Spot Collection Card-Spanish Instructions
- Blood Spot Collection Card-Chinese Instructions
- Blood Spot Collection Instructions

Method Name
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

NY State Available
Yes

Specimen

Specimen Type
Whole blood

Ordering Guidance
The preferred test for evaluating adults for an inherited disorder of methionine, cobalamin, or propionate metabolism is CMMPP / Cobalamin, Methionine, and Methylmalonic Acid Pathways, Plasma or CMMPS / Cobalamin, Methionine, and Methylmalonic Acid Pathways, Serum.

Specimen Required
Supplies: Card-Blood Spot Collection (Filter Paper) (T493)
Container/Tube:
Preferred: Card-Blood Spot Collection (Filter Paper)
Acceptable: Local newborn screening card, Whatman Protein Saver 903 filter paper, PerkinElmer 226 (formerly Ahlstrom 226) filter paper, Munktell filter paper
Specimen Volume: 2 Blood spots
Collection Instructions:
1. Do not use device or capillary tube containing EDTA or ACD to collect specimen. Sodium heparin is acceptable but must be spotted on card the same day as collected.
2. Completely fill at least 2 circles on the filter paper card (approximately 100 microliters blood per circle) using blood from a heel or finger stick.
3. Let blood dry on filter paper at ambient temperature in a horizontal position for a minimum of 3 hours.
4. Do not expose specimen to heat or direct sunlight.
5. Do not stack wet specimens.

Additional Information:
1. For collection instructions, see Blood Spot Collection Instructions
2. For collection instructions in Spanish, see Blood Spot Collection Card-Spanish Instructions (T777)
3. For collection instructions in Chinese, see Blood Spot Collection Card-Chinese Instructions (T800)

Forms
1. Biochemical Genetics Patient Information (T602)
2. If not ordering electronically, complete, print, and send a Biochemical Genetics Test Request (T798) with the specimen.

Reject Due To

- Shows serum rings; Insufficient specimen
- Reject

Specimen Minimum Volume

1 Blood spot

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>Ambient (preferred)</td>
<td>FILTER PAPER</td>
<td></td>
</tr>
<tr>
<td>Frozen</td>
<td>FILTER PAPER</td>
<td>FILTER PAPER</td>
<td></td>
</tr>
<tr>
<td>Refrigerated</td>
<td>FILTER PAPER</td>
<td>FILTER PAPER</td>
<td></td>
</tr>
</tbody>
</table>

Clinical & Interpretive

Clinical Information

Homocystinuria is an autosomal recessive disorder caused by a deficiency of the enzyme cystathionine beta-synthase. The incidence of homocystinuria is approximately 1 in 200,000 to 335,000 live births. Classical homocystinuria is characterized by a normal presentation at birth followed by failure to thrive and developmental delay. Untreated homocystinuria can lead to ophthalmological problems, mental retardation, seizures, thromboembolic episodes, and skeletal abnormalities. The biochemical phenotype is characterized by increased plasma concentrations of methionine and homocysteine (free and total) along with decreased concentrations of cystine.

Methylmalonic acidemia (MMA) and propionic acidemia (PA) are defects of propionate metabolism caused by deficiencies in methylmalonyl-CoA mutase and propionyl-CoA carboxylase, respectively. The clinical phenotype includes vomiting, hypotonia, lethargy, apnea, hypothermia, and coma. The biochemical phenotype for MMA includes elevations of propionyl carnitine, methylmalonic acid, and methylcitric acid. Patients with PA will have elevations of propionyl carnitine and methylcitric acid with normal methylmalonic acid concentrations as the enzymatic defect is upstream of methylmalonic-CoA mutase.

Newborn screening for inborn errors of methionine and propionic acid metabolism relies on elevations of methionine and propionyl carnitine. These analytes are not specific for these conditions and are prone to false-positive results, leading to increased cost, stress, and anxiety for families who are subjected to follow-up testing. Homocysteine, methylmalonic acid, and methylcitric acid are more specific markers for inborn errors of methionine and propionic acid metabolism. Molecular genetic testing can be used to confirm a biochemical diagnosis for homocystinuria, methylmalonic acidemia, and propionic acidemia.

Reference Values

HOMOCYSTEINE:
<9.0 nmol/mL
METHYLMALONIC ACID:
<4.0 nmol/mL
METHYL CITRIC ACID:
<1.0 nmol/mL
An interpretive report will also be provided.

Interpretation
Elevated homocysteine, methylcitric acid, or methylmalonic acid concentrations are indicative of an underlying metabolic disorder.

Cautions
Normal levels may be seen in affected individuals undergoing treatment.

Supportive Data
In a Mayo study that analyzed specimens from 200 unaffected neonates, clear clinical discrimination was observed when compared to patients with defects of propionate or methionine metabolism. The 99.5 percentile, determined from the analysis of 200 dried blood spots of unaffected controls, for methylmalonic acid (MMA), methylcitric acid (MCA), and homocysteine (HCY), are 1.58 nmol/mL, 0.62 nmol/mL, and 9.9 nmol/mL, respectively, providing clear clinical discrimination from patients with defects of propionate or methionine metabolism (eg, methylmalonic acidemia: MMA=31.9 nmol/mL; propionic acidemia: MCA=12.8 nmol/mL; homocystinuria: HCY=189 nmol/mL).

Clinical Reference

Performance

Method Description

PDF Report
No

Specimen Retention Time
1 year
Performing Laboratory Location
Rochester

Fees & Codes

Test Classification
This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
83090
83918