Overview

Useful For
Confirmation of a clinical diagnosis of Ehlers-Danlos Syndrome (EDS)
Differentiating between the different subtypes of EDS for diagnosis and management purposes
Ascertaining carrier status of family members of individuals diagnosed with EDS for genetic counseling purposes

Genetics Test Information
This test includes next-generation sequencing with deletion/duplication (copy number variation) analysis and supplemental Sanger sequencing to evaluate for variants in the ADAMTS2, ATP7A, CHST14, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, FKBP14, FLNA, PLOD1, and SLC39A13 genes.
Identification of a pathogenic variant may assist with prognosis, clinical management, familial screening, and genetic counseling.

Special Instructions
- Informed Consent for Genetic Testing
- Marfan and Related Disorders Patient Information
- Informed Consent for Genetic Testing (Spanish)

Method Name
Custom Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Supplemental Sanger Sequencing or qPCR if needed

NY State Available
Yes

Specimen

Specimen Type
Varies

Ordering Guidance
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Mutation, Targeted Testing, Varies.

Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.

Necessary Information
1. Marfan and Related Disorders Patient Information (T636) is strongly recommended, but not required, to be filled out and sent with the specimen. This information aids in providing a more thorough interpretation of test results. Ordering providers are strongly encouraged to complete the form and send it with the specimen.
2. Include physician name and phone number with specimen.

Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Submit only 1 of the following specimens:

Specimen Type: Whole blood
Container/Tube: Lavender top (EDTA)
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube. **Do not aliquot.**

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 14 days

Specimen Type: Extracted DNA
Container/Tube: 2 mL screw top tube
Specimen Volume: 100 mcL (microliters)
Collection Instructions:
1. The preferred volume is 100 mcL at a concentration of 250 ng/mcL.
2. Include concentration and volume on tube.
Specimen Stability Information: Frozen (preferred)/Ambient/Refrigerated

Forms

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available:
 - **Informed Consent for Genetic Testing** (T576)
 - **Informed Consent for Genetic Testing (Spanish)** (T826)
2. **Marfan and Related Disorders Patient Information** (T636) is recommended
3. If not ordering electronically, complete, print, and send a **Cardiovascular Test Request Form** (T724) with the specimen.

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Minimum Volume

Whole blood: 1 mL

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies (preferred)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical & Interpretive

Clinical Information

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Protein</th>
<th>Inheritance*</th>
<th>EDS Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMTS2</td>
<td>Procollagen I</td>
<td>AR</td>
<td>Dermatosparaxis</td>
</tr>
<tr>
<td></td>
<td>N-proteinase</td>
<td></td>
<td>EDS (dEDS) / human</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Inheritance</td>
<td>EDS Type</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ATP7A</td>
<td>Copper-transporting ATPase 1</td>
<td>XL</td>
<td>Occipital horn syndrome</td>
</tr>
<tr>
<td>CHST14</td>
<td>Dermatan-4-sulfotransferase-1 (D4ST1)</td>
<td>AR</td>
<td>Musculocontractural EDS (mcEDS-CHST14)</td>
</tr>
<tr>
<td>COL1A1</td>
<td>Collagen alpha-1(I) chain</td>
<td>AD AD AD</td>
<td>Classical EDS (cEDS) Vascular EDS (vEDS) Arthrochalasia EDS (aEDS)</td>
</tr>
<tr>
<td>COL1A2</td>
<td>Collagen alpha-2(I) chain</td>
<td>AD AR</td>
<td>Arthrochalasia EDS (aEDS) Cardiac valvular EDS (cvEDS)</td>
</tr>
<tr>
<td>COL3A1</td>
<td>Collagen alpha-1(III) chain</td>
<td>AD</td>
<td>Vascular EDS (vEDS)</td>
</tr>
<tr>
<td>COL5A1</td>
<td>Collagen alpha-1(V) chain</td>
<td>AD</td>
<td>Classical EDS (cEDS)</td>
</tr>
<tr>
<td>COL5A2</td>
<td>Collagen alpha-2(V) chain</td>
<td>AD</td>
<td>Classical EDS (cEDS)</td>
</tr>
<tr>
<td>FKB14</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB14 (FK506 binding protein 14)</td>
<td>AR</td>
<td>Kyphoscoliotic EDS (kEDS-FKB14)</td>
</tr>
<tr>
<td>FLNA</td>
<td>Filamin A</td>
<td>XL</td>
<td>Filamin A related EDS with periventricular nodular heterotopia</td>
</tr>
<tr>
<td>PLOD1</td>
<td>Procollagen-lysine 5-dioxygenase</td>
<td>AR</td>
<td>Kyphoscoliotic EDS (kEDS-PLOD1)</td>
</tr>
<tr>
<td>SLC39A13</td>
<td>Zinc transporter ZIP13</td>
<td>AR</td>
<td>Spondylodysplastic EDS (spEDS-SLC39A13)</td>
</tr>
</tbody>
</table>

Reference Values

An interpretive report will be provided.

Interpretation

Evaluation and categorization of variants is performed using the most recent published American College of Medical Genetics and Genomics (ACMG) recommendations as a guideline.(1) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and predictions made by these tools may change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Cautions

Clinical Correlations:
Some individuals who have involvement of 1 or more of the genes on the panel may have a variation that is not identified by the methods performed (eg, promoter variants, deep intronic variants). The absence of a variant, therefore, does not eliminate the possibility of disease.
Test results should be interpreted in context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete. For predictive testing of asymptomatic individuals, it is often useful to first test an affected family member. Identification of a pathogenic variant in an affected individual allows for more informative testing of at-risk individuals.

Technical Limitations:
Next-generation sequencing (NGS) may not detect all types of genetic variants. Additionally, rare alteration (ie, polymorphisms) may be present that could lead to false negative or positive results. If results do not match clinical findings, consider alternative methods for analyzing these genes, such as Sanger sequencing. If the patient has had an allogeneic blood or bone marrow transplant or a recent (ie, <6 weeks from time of sample collection) heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants Policy:
At this time, it is not standard practice for the laboratory to systematically review likely pathogenic variants or variants of uncertain significance that are detected and reported. The laboratory encourages health care providers to contact the laboratory at any time to learn how the status of a particular variant may have changed over time. Consultation with a genetics professional should be considered for interpretation of this result. A list of benign and likely benign variants detected for this patient is available from the laboratory upon request. Contact the laboratory if additional information is required regarding the transcript or human genome assembly used for the analysis of the patient's results.

Clinical Reference

Performance

Method Description
Next-generation sequencing (NGS) is performed using an Illumina instrument with paired-end reads. The DNA is prepared for NGS using a custom Agilent SureSelect Target Enrichment System. Data is analyzed with a bioinformatics software pipeline for sequence variants and the presence of large intragenic deletions and duplications. Supplemental Sanger sequencing or qPCR may be performed occasionally in regions where NGS is insufficient for data capture or not specific enough to correctly identify a variant. Sanger sequencing or qPCR may also be used for confirmatory testing. (Unpublished Mayo method)
Genes analyzed: ADAMTS2, ATP7A, CHST14, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, FKBP14, FLNA, PLOD1, SLC39A13

PDF Report
No

Specimen Retention Time
Extracted DNA: 2 months

Performing Laboratory Location
Rochester

Fees & Codes

Test Classification
This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
81479
81408 x 2