Overview

Useful For
Evaluation for patients with a personal or family history suggestive of Von Hippel-Lindau (VHL) syndrome

Establishing a diagnosis of a VHL allowing for targeted cancer surveillance based on associated risks

Identifying genetic variants associated with increased risk for VHL syndrome allowing for predictive testing of at-risk family members

Genetics Test Information
This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in one gene associated with Von Hippel-Lindau (VHL) syndrome: VHL. See Method Description for additional details.

Identification of a pathogenic variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for VHL syndrome

Special Instructions
• Molecular Genetics: Inherited Cancer Syndromes Patient Information
• Informed Consent for Genetic Testing
• Informed Consent for Genetic Testing (Spanish)

Method Name
Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available
Yes

Specimen

Specimen Type
Varies

Ordering Guidance
For patients suspected of having hereditary erythrocytosis or polycythemia, order HEMP / Hereditary Erythrocytosis Mutations, Whole Blood.

For a comprehensive hereditary cancer panel that includes the VHL gene, consider one of the following tests:

- ENDCP / Hereditary Endocrine Cancer Panel, Varies
- HPGLP / Hereditary Paraganglioma/Pheochromocytoma Panel, Varies
- RENCP / Hereditary Renal Cancer Panel, Varies

Testing for VHL gene as part of a customized panel is available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

Targeted testing for familial variants (also called site-specific or known mutations testing) is available for this gene. For more information see FMTT / Familial Mutation, Targeted Testing, Varies.

Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.

Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Specimen Type: Whole blood

Container/Tube:

- **Preferred:** Lavender top (EDTA) or yellow top (ACD)
- **Acceptable:** Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send specimen in original tube. **Do not** aliquot.
Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated

Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:
 - Informed Consent for Genetic Testing (T576)
 - Informed Consent for Genetic Testing (Spanish) (T826)
2. Molecular Genetics: Inherited Cancer Syndromes Patient Information Sheet (T519) in Special Instructions
3. If not ordering electronically, complete, print, and send a Oncology Test Request (T729) with the specimen.

Reject Due To
All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Minimum Volume
See Specimen Required

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies (preferred)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical & Interpretive

Clinical Information
Germline variants in the VHL gene are associated with Von Hippel-Lindau (VHL) syndrome, a rare autosomal dominant hereditary cancer syndrome. (1,2) VHL syndrome is characterized by increased risk to develop a variety of cancerous and non-cancerous tumors and lesions, including: hemangioblastomas of the brain or spinal cord, retinal angiomas, renal, pancreatic and epididymal cysts, pheochromocytomas, pancreatic neuroendocrine tumors, endolymphatic cell tumors, and clear cell renal cell carcinoma. (3) While considered a highly penetrant condition, approximately 20% of VHL syndrome cases are due to new (de novo) pathogenic variants, which in some cases result in disease mosaicism. (4)

Research has suggested that certain combinations of VHL tumors cluster in VHL families, and this may be driven by the type of VHL gene variant present in the family. (4) This observation has led to a phenotype-based classification of VHL syndrome. However, it should be noted that these patterns are not entirely specific, and should not necessarily be used
The National Comprehensive Cancer Network provides recommendations regarding the medical management of individuals with VHL syndrome.

Of note, germline variants in the VHL gene are also associated with autosomal recessive hereditary erythrocytosis or polycythemia. Cases of VHL cancer syndrome and erythrocytosis are largely mutually exclusive, although there is some overlap. For information regarding genetic testing for patients suspected to have hereditary erythrocytosis or polycythemia, see HEMP / Hereditary Erythrocytosis Mutations, Whole Blood.

Reference Values
An interpretive report will be provided.

Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics (ACMG) recommendations.(5) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Clinical Correlations:
Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of further testing options or for assistance in the interpretation of these results, Mayo Clinic Laboratory genetic counselors can be contacted at 800-533-1710.

Technical Limitations:
Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be
There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Insertions/deletions (indels) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller indels.

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants:
At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages health care providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time.
Variant Evaluation:
Evaluation and categorization of variants is performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline. Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgement.

Clinical Reference

Performance

Method Description
Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the VHL gene analyzed, as well as some other regions that have known pathogenic variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for insertions/deletion (indels) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction (PCR)-based quantitative method is performed to test for the presence of deletions and duplications in the gene analyzed.
There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences.

The reference transcript for VHL gene is NM_000551.3. Reference transcript numbers may be updated due to transcript re-versioning. Always refer to the final patient report for gene transcript information referenced at the time of testing.

Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria. (Unpublished Mayo method)

PDF Report
Supplemental

Specimen Retention Time
Whole Blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory Location
Rochester

Fees & Codes

Test Classification
This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
81404

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHLZZ</td>
<td>VHL Full Gene Analysis</td>
<td>82533-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Reporting Name</th>
<th>LOINC®</th>
</tr>
</thead>
<tbody>
<tr>
<td>614875</td>
<td>Test Description</td>
<td>62364-5</td>
</tr>
<tr>
<td>614876</td>
<td>Specimen</td>
<td>31208-2</td>
</tr>
<tr>
<td>Code</td>
<td>Section</td>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>614877</td>
<td>Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>614878</td>
<td>Result Summary</td>
<td>50397-9</td>
</tr>
<tr>
<td>614879</td>
<td>Result</td>
<td>82939-0</td>
</tr>
<tr>
<td>614880</td>
<td>Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>614881</td>
<td>Resources</td>
<td>99622-3</td>
</tr>
<tr>
<td>614882</td>
<td>Additional Information</td>
<td>48767-8</td>
</tr>
<tr>
<td>614883</td>
<td>Method</td>
<td>85069-3</td>
</tr>
<tr>
<td>614884</td>
<td>Genes Analyzed</td>
<td>48018-6</td>
</tr>
<tr>
<td>614885</td>
<td>Disclaimer</td>
<td>62364-5</td>
</tr>
<tr>
<td>614886</td>
<td>Released By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>