Overview

Useful For
Evaluation of patients with a personal or family history suggestive of a hereditary prostate cancer syndrome
Establishing a diagnosis of a hereditary prostate cancer syndrome allowing for targeted cancer surveillance based on associated risks
Identifying genetic variants associated with increased risk for prostate cancer, allowing for predictive testing and appropriate screening of at-risk family members
Therapeutic eligibility with poly adenosine diphosphate-ribose polymerase (PARP) inhibitors based on certain gene alterations (e.g., BRCA1, BRCA2)

Genetics Test Information
This test utilizes next generation sequencing to detect single nucleotide and copy number variants in 18 genes associated with prostate cancer risk: ATM, BRCA1, BRCA2, BRIP1, CHEK2, EPCAM (copy number variants only), FANCA, HOXB13, MLH1, MSH2, MSH6, NBN, PALB2, PMS2, RAD51B, RAD51C, RAD51D, TP53. See Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel in Special Instructions and Method Description for additional details.
Identification of a pathogenic variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for hereditary prostate cancer.

Special Instructions
- Molecular Genetics: Inherited Cancer Syndromes Patient Information
- Informed Consent for Genetic Testing
- Informed Consent for Genetic Testing (Spanish)
- Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel

Method Name
Sequence Capture and Next-Generation Sequencing (NGS), Polymerase Chain Reaction (PCR), Sanger Sequencing and/or Multiplex Ligation-Dependent Probe Amplification (MLPA)

NY State Available
Yes

Specimen

Specimen Type
Varies

Ordering Guidance
Customization of this panel and/or single gene analysis for any gene present on this panel is available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. For more information see FMTT / Familial Mutation, Targeted Testing, Varies.

Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.

Specimen Required

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Specimen Type: Whole blood

Container/Tube:

- **Preferred:** Lavender top (EDTA) or yellow top (ACD)
- **Acceptable:** Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube. **Do not** aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated

Forms

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available in Special Instructions:
 - **Informed Consent for Genetic Testing** (T576)
 - **Informed Consent for Genetic Testing-Spanish** (T826)
2. **Molecular Genetics: Inherited Cancer Syndromes Patient Information** (T519) in Special Instructions
3. **Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel** in Special Instructions
4. If not ordering electronically, complete, print, and send a **Oncology Test Request** (T729) with the specimen.

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Minimum Volume

See Specimen Required

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies (preferred)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical & Interpretive

Clinical Information

Hereditary prostate cancer accounts for approximately 5% to 10% of all prostate cancer cases, and up to half of all early-onset prostate cancer cases.(1-3) Evaluation of the genes on this panel may be useful for families with a history of prostate cancer to determine cancer risk, surveillance recommendations, and targeted treatments (such as poly adenosine diphosphate-ribose polymerase [PARP] inhibitor therapy).(4,5)

The 2 most common hereditary prostate cancer syndromes are hereditary breast and ovarian cancer (HBOC) syndrome and Lynch syndrome.(3-5)

HBOC syndrome is caused by pathogenic variants in the **BRCA1** and **BRCA2** genes. Individuals with HBOC syndrome are also at increased risks for multiple cancer types including prostate cancer.(5)
Lynch syndrome is caused by variants in the \textit{MLH1}, \textit{MSH2}, \textit{MSH6}, and \textit{PMS2} mismatch-repair genes and deletions of the \textit{EPCAM} gene. A subset of these patients present with prostate cancer.\cite{3-5}

Other genes known to increase risk for prostate cancer are also included in this panel.\cite{3-5} The risk for developing cancer associated with these syndromes varies. Some individuals with a pathogenic variant in one of these genes develop multiple primary cancers.\cite{4}

\textit{The National Comprehensive Cancer Network and the American Cancer Society provide recommendations regarding the medical management of individuals with hereditary prostate cancer syndromes.}\cite{4,5}

\textbf{Reference Values}

An interpretive report will be provided.

\textbf{Interpretation}

All detected variants are evaluated according to American College of Medical Genetics and Genomics (ACMG) recommendations.\cite{6} Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

\textbf{Cautions}

\textbf{Clinical Correlations:}

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of further testing options or for assistance in the interpretation of these results, Mayo Clinic Laboratory genetic counselors can be contacted at 800-533-1710.

\textbf{Technical Limitations:}

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95\% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Insertions/deletions (indels) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller indels.

\textbf{Deletion/Duplication Analysis:}

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

Genes may be added or removed based on updated clinical relevance. For the most up to date list of genes included in this test and detailed information regarding gene specific performance and technical limitations see Method.
Description, Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel in Special Instructions or contact a laboratory genetic counselor at 800-533-1710.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants Policy:
At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages health care providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time.

Variant Evaluation:
Evaluation and categorization of variants is performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline. Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgement.

Clinical Reference

Performance

Method Description
Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known pathogenic variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for insertions/deletions (indels) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS, multiplex ligation-dependent probe amplification (MLPA), and/or a polymerase chain reaction (PCR)-based quantitative method is performed to test for the presence of deletions and duplications in the genes.
Test Definition: PRS8P
Hereditary Prostate Cancer Panel

analyzed. **PCR and gel electrophoresis are performed to test for the presence of the 10 megabase inversion of coding exons 1-7 of the MSH2 gene.** For details regarding the targeted genes analyzed for each test see **Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel** in Special Instructions.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. For details regarding the specific gene regions not routinely covered see **Targeted Genes and Methodology Details for Hereditary Prostate Cancer Panel** in Special Instructions.

Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria. (Unpublished Mayo method)

Genes analyzed: **ATM, BRCA1, BRCA2, BRIP1, CHEK2, EPCAM (copy number variants only), FANCA, HOXB13, MLH1, MSH2, MSH6, NBN, PALB2, PMS2, RAD51B, RAD51C, RAD51D, TP53**

PDF Report
Supplemental

Specimen Retention Time
Whole Blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory Location
Rochester

Fees & Codes

Test Classification
This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
81408
81162
81403
81292
81295
81298
81307
81319
81351
81479