Overview

Useful For
Carrier screening and diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia (CAH) in individuals with a personal or family history of 21-hydroxylase deficiency, or as follow-up to positive CAH newborn screens and/or measurement of basal and adrenocorticotropic hormone-1-24 stimulated 17-hydroxyprogesterone, androstenedione, and other adrenal steroid levels

May be used to identify CYP21A2 variant in individuals with a suspected diagnosis of 21-hydroxylase deficient CAH when a common variant panel is negative or only identifies 1 variant.

In prenatal cases of ambiguous genitalia detected by ultrasound, particularly when the fetus is confirmed XX female by chromosome analysis.

This test should also be used for known/familial variant analysis for CYP21A2. Due to the complexity of the CYP21A2 locus, site specific testing for known/familial variants is not offered for this gene.

Reflex Tests

<table>
<thead>
<tr>
<th>Test Id</th>
<th>Reporting Name</th>
<th>Available Separately</th>
<th>Always Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCC</td>
<td>Maternal Cell Contamination, B</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CULFB</td>
<td>Fibroblast Culture for Genetic Test</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CULAF</td>
<td>Amniotic Fluid Culture/Genetic Test</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>_STR1</td>
<td>Comp Analysis using STR (Bill only)</td>
<td>No, (Bill only)</td>
<td>No</td>
</tr>
<tr>
<td>_STR2</td>
<td>Add'l comp analysis w/STR (Bill Only)</td>
<td>No, (Bill only)</td>
<td>No</td>
</tr>
</tbody>
</table>

Genetics Test Information
This test includes Sanger gene sequencing and multiplex ligation-dependent probe amplification to evaluate the CYP21A2 gene for carrier screening and diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia (CAH).

Testing Algorithm
For prenatal specimens only: If amniotic fluid (nonconfluent cultured cells) is received, amniotic fluid culture will be added and charged separately. If chorionic villus specimen (nonconfluent cultured cells) is received, fibroblast culture will be added and charged separately. For any prenatal specimen that is received, maternal cell contamination studies will be added.

Special Instructions
Highlights
This test aids in carrier screening and diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia (CAH).

Full gene sequencing and multiplex ligation-dependent probe amplification are used to detect the common pathogenic CYP21A2 variants, CYP21A2 full gene deletions, and rare CYP21A2 variants.

Method Name
Polymerase Chain Reaction (PCR) Amplification followed by DNA Sequence Analysis and Gene Dosage Analysis by Multiplex Ligation-Dependent Probe Amplification (MLPA)

NY State Available
Yes

Specimen

Specimen Type
Varies

Ordering Guidance
This test is a molecular analysis of the CYP21A2 gene and does not include biochemical analysis of steroids. For biochemical analysis for congenital adrenal hyperplasia (CAH) which includes cortisol, androstenedione and 17-Hydroxyprogesterone, see CAH21 / Congenital Adrenal Hyperplasia (CAH) Profile for 21-Hydroxylase Deficiency, Serum.

Additional Testing Requirements
All prenatal specimens must be accompanied by a maternal blood specimen; order MATCC / Maternal Cell Contamination, Molecular Analysis on the maternal specimen.

Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.

Prenatal specimens can be sent Monday through Thursday and must be received by 5 p.m. Central Time on Friday in order to be processed appropriately.

Necessary Information
CYP21A2 Gene Testing for Congenital Adrenal Hyperplasia Patient Information (T663) is strongly recommended, but not required, to be filled out and sent with the specimen. This information aids in providing a more thorough interpretation of test results. Ordering providers are strongly encouraged to complete the form and send it with the specimen.
Specimen Required

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Submit only 1 of the following specimens:

Specimen Type: Whole blood
Container/Tube: Preferred: Lavender top (EDTA)
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 14 days

Prenatal Specimens
Specimen Type: Amniotic fluid
Container/Tube: Amniotic fluid container
Specimen Volume: 20 mL
Specimen Stability Information: Refrigerated (preferred)/Ambient

Specimen Type: Chorionic villi
Container/Tube: 15-mL tube containing 15 mL of transport media
Specimen Volume: 20 mg
Specimen Stability Information: Refrigerated

Acceptable
Specimen Type: Confluent cultured cells
Container/Tube: T-25 flask
Specimen Volume: 2 Flasks
Collection Instructions: Submit confluent cultured cells from another laboratory.
Specimen Stability Information: Ambient (preferred)/Refrigerated

Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
 - Informed Consent for Genetic Testing (T576)
 - Informed Consent for Genetic Testing-Spanish (T826)
2. CYP21A2 Gene Testing for Congenital Adrenal Hyperplasia Patient Information (T663) is recommended.

Specimen Minimum Volume
Amniotic Fluid: 10 mL
Blood: 1 mL
Chorionic Villi: 5 mg
Test Definition: CYPZ
21-Hydroxylase Gene, CYP21A2, Full Gene Analysis, Varies

Reject Due To
All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Time</th>
<th>Special Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Ambient (preferred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical & Interpretive

Clinical Information
Congenital adrenal hyperplasia (CAH), with an incidence rate of 1 in 10,000 to 18,000 live births, is one of the most common inherited syndromes. The condition is characterized by impaired cortisol production due to inherited defects in steroid biosynthesis. The clinical consequences of CAH, besides diminished cortisol production, depend on which enzyme is affected and whether the loss of function is partial or complete.

In greater than 90% of CAH cases, the affected enzyme is 21-steroid hydroxylase, encoded by the \textit{CYP21A2} gene located on chromosome 6 within the highly recombinant human histocompatibility complex locus. 21-hydroxylase deficient CAH is inherited in an autosomal recessive pattern and has a spectrum of clinical phenotypes depending upon residual enzyme activity. Excessive adrenal androgen biosynthesis results in varying degrees of virilization. If there is some residual enzyme activity, a non-classical phenotype results, with signs of hyperandrogenism typically starting in later childhood or adolescence. Individuals with severe enzyme deficiency have classical CAH, with prenatal onset of virilization. Classical CAH is subdivided into simple-virilizing (minimal residual enzyme activity) and salt-wasting (no residual enzyme activity) forms. Patients with salt-wasting CAH have both cortisol and mineral corticosteroid deficiency and are at risk for life-threatening salt-wasting crises if untreated.

Because of its high incidence rate, 21-hydroxylase deficiency is screened for in most US newborn screening programs, typically by measuring 17-hydroxyprogesterone concentrations in blood spots by immunoassay. Confirmation by other testing strategies (eg, liquid chromatography tandem mass spectrometry: LC-MS/MS), CAH2T / Congenital Adrenal Hyperplasia Newborn Screen, Blood Spot), or retesting after several weeks, is required for most positive screens because of the high false-positive rates of the immunoassays (due to physiological elevations of 17-hydroxyprogesterone in premature babies and immunoassay cross-reactivity with other steroids). In a small percentage of cases, additional testing will fail to provide a definitive diagnosis. In addition, screening strategies can miss many non-classical cases, which may present later in childhood or adolescence and require more extensive steroid hormone profiling, including testing before and after adrenal stimulation with adrenocorticotropic hormone (ACTH)-1-24.

For these reasons, genetic diagnosis plays an important ancillary role in both classical and nonclassical cases. In addition, the high carrier frequency (approximately 1 in 50) for \textit{CYP21A2} variant makes genetic diagnosis important for genetic counseling. Genetic testing can also play a role in prenatal diagnosis of 21-hydroxylase deficiency. However, accurate genetic diagnosis continues to be a challenge because most of the variants arise from recombination events between
CYP21A2 and its highly homologous pseudogene, CYP21A1P (transcriptionally inactive). In particular, partial or complex rearrangements (with or without accompanying gene duplication events), which lead to reciprocal exchanges between gene and pseudogene, can present severe diagnostic challenges. Comprehensive genetic testing strategies must therefore allow accurate assessment of most, or all, known rearrangements and variants, as well as unequivocal determination of whether the observed changes are located within a potentially transcriptionally active genetic segment. Testing of additional family members is often needed for clarification of genetic test results.

Reference Values
An interpretive report will be provided.

Interpretation
All detected alterations will be evaluated according to American College of Medical Genetics and Genomics (ACMG) recommendations. Variants will be classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Because of the complexity of the genetic structure of the CYP21A2 locus, and the possibility that a patient's congenital adrenal hyperplasia (CAH) may be due to other gene defects, genetic testing results should be correlated carefully with clinical and biochemical data.

This testing strategy is superior to approaches previously used but may still miss some complex and large-scale genetic rearrangements or deletions, as well as genetic changes in far upstream or downstream gene-regulatory elements that impair CYP21A2 gene expression. This can lead to false-negative test results.

Rare alterations (ie, polymorphisms) in primer binding sites can lead to selective allelic drop-out, which can lead to false-negative or false-positive diagnosis.

Patients without genetic evidence for disease-causing CYP21A2 genetic changes may still have CAH due to a different enzyme defect. Additional and expanded biochemical steroid profiling is recommended if the clinical picture is strongly suggestive of CAH.

Clinical Reference
Method Description

A combined testing approach involving polymerase chain reaction (PCR) amplification, bi-directional sequence analysis, and multiplex ligation-dependent probe amplification (MLPA) is used to identify sequence variants and copy number variation within the \textit{CYP21A2} gene (GenBank accession number NM_000500; build GRCh37 [hg19]).

Four sets of PCR primer pairs amplify the \textit{CYP21A2} gene, the inactive \textit{CYP21A1P} pseudogene, and the \textit{CYP21A2/CYP21A1P} and \textit{CYP21A1P/CYP21A2} hybrids to determine the presence or absence of amplification product.

Bi-directional full gene sequence analysis, including a portion of the promoter and 3’-untranslated regions, is then performed on the \textit{CYP21A2} gene and the \textit{CYP21A2/CYP21A1P} hybrid (if present) to test for the presence of sequence variants. Because the \textit{CYP21A1P/CYP21A2} hybrid and the \textit{CYP21A1P} pseudogene are expected to be inactive, sequencing is not performed unless required for interpretation.

MLPA is performed to determine the copy number of the 5’- and 3’-regions of the \textit{CYP21A2} gene and the \textit{CYP21A1P} pseudogene. Quantification and comparison of results is used to determine the copy number of the \textit{CYP21A2} gene, the \textit{CYP21A1P} pseudogene, the \textit{CYP21A2/CYP21A1P} and \textit{CYP21A1P/CYP21A2} hybrids. Correlation of results from PCR, bi-directional sequencing, and MLPA is used to determine the \textit{CYP21A2} genotype.

This technology cannot always determine the cis/trans status (cis=same chromosome, trans=opposite chromosomes) of the identified genes, rearrangements, or variants. Family studies of blood relatives might assist in determination of the cis/trans status. (Cradic KW, Grebe SK: A diagnostic sequencing assay for CYP21 based on promoter activity provides better understanding of gene rearrangements. Abstract. Endocrine Society Annual Meeting, ENDO 2005)

PDF Report
No

Day(s) Performed
Varies

Report Available
14 to 21 days

Specimen Retention Time
Whole Blood: 2 weeks (if available) Extracted DNA: 3 months

Performing Laboratory Location
Rochester

Fees & Codes

Fees
- Authorized users can sign in to Test Prices for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
Test Definition: CYPZ
21-Hydroxylase Gene, CYP21A2, Full Gene Analysis, Varies

- Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
This test was developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
81405-CYP21A2 (cytochrome P450, family 21, subfamily A, polypeptide2) (eg, steroid 21-hydroxylase isoform, congenital adrenal hyperplasia), full gene sequence
88233-Tissue culture, skin or solid tissue biopsy (if appropriate)
88235-Tissue culture for amniotic fluid (if appropriate)
88240-Cryopreservation (if appropriate)
81265-Comparative analysis using Short Tandem Repeat (STR) markers; patient and comparative specimen (eg, pre-transplant recipient and donor germline testing, post-transplant non-hematopoietic recipient germline [eg, buccal swab or other germline tissue sample] and donor testing, twin zygosity testing or maternal cell contamination of fetal cells (if appropriate)
81479 (if appropriate for government payers)

LOINC® Information

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Order Name</th>
<th>Order LOINC® Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYPZ</td>
<td>CYP21A2 Gene, Full Gene Analysis</td>
<td>94197-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result ID</th>
<th>Test Result Name</th>
<th>Result LOINC® Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>37488</td>
<td>Result Summary</td>
<td>50397-9</td>
</tr>
<tr>
<td>37489</td>
<td>Result</td>
<td>82939-0</td>
</tr>
<tr>
<td>37490</td>
<td>Interpretation</td>
<td>69047-9</td>
</tr>
<tr>
<td>37491</td>
<td>Additional Information</td>
<td>48767-8</td>
</tr>
<tr>
<td>37492</td>
<td>Specimen</td>
<td>31208-2</td>
</tr>
<tr>
<td>37493</td>
<td>Source</td>
<td>31208-2</td>
</tr>
<tr>
<td>37494</td>
<td>Released By</td>
<td>18771-6</td>
</tr>
</tbody>
</table>